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ABSTRACT

A method for including the solution of the transfer equation in
a standard Henyey type hydredynamic code has been developed. This
modified Henyey method has been used‘in an implicit hydrodynamic
code to compute deep envelope models of a classical Cepheid with a
period of 12':1 including radiative transfer effects in the optically
thin zones,

 There are two secondary features on the light curve of the
model, a shoulder during rising»lightland a distinct bump during
falling light. It is shown thét tﬁe shoulder during rising light is
caused by a deep envelope pressure wave and that the bump during
falling light may be due to an atmospheric oscillation, It is shown
that the atmospheric oscillation mechanism is comnsistent with the
Hertzsprung sequence and the period-luminesity relation,

The structure of each hydrodynamic model was used as a spapshot
of the temperatureland pressure structure of the atmosphefic layers.
After‘usiég line blocking factors to account for the effect of
spectral lines on the spectral energy.distributions computed for the
models, broad band UBVRI colors were calculated. The light and color
curves of the models repfoduce the observed amplitude and asymmetry

of Cepheids in this period range. In addition, the color-T.g¢



relations derived froﬁ the models were found to agree with those
derived independently. It was found that the colors of the
equilibrium model are best reproduced if the intensity mean of the
magnitudes, <B > " <V >1, is used to compute mean colors. It
was also found that loops in the (U-B)-(B-V) diagram are probably
due to the dependence of the continuous opacity on the electron
pressure.

Line profiles were then computed using the moving atmospheres
from the hydrodynamic models. It was found that the velocity
gradients in the atmosphere are not responsible for the large
microturbulent velocities observed in Cepheids but may be responsible
for the occurrence of supersonic microturbulence. The total observed
microturbulence was found to be comsistent with the linear sum of
the classical microturbulence and that caused by the velocity gradients.,
it was also found that the splitting of the cores of the strong lines
is due to shock induced temperature inversions in the line forming
region.

The adopted light, color, and velocity curves were used to
study three methods frequently used to determine the mean radii
of Cepheids. It was found that an accuracy of 10% is possible only

if high quality observations are used.
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NOTATION

The choice of notation always presents a problem. One would like
to have each symbol represent a singlé quantity. On the other hand,
one would also like to use standard notation wherever possible.

These two criteria are often incompatible. In the following standard
notation is used whenever possible., If a symbol has more than one
meaning, the context in which it is used is sufficient to remove any

ambiguity. The following is a partial list of the symbols used.

a . radiation demsity constant = 7,565 x.10_15érg cm-3 deg-4
B L/IGs or
Planck function
ﬁk monochromatic Planck function
b k/pm,
| vy o 10 -1

c speed of light = 2,998 x 107 cm 8
E total energy
Eion+ex energy contained in ionization and excitation of atoms
Er radiétiqn energy density
FA flux in erg s"1 cnfz i-l

. -1 -2 . -1
Eu flux in erg s ~ com Hz
g gravitational acceleration

. s _ et 2 -2
G gravitational “constant = 6.668 x 10 ~ dyn em g
I specific intensity, or
identity matrix

L luminosity
m mass inside a shell of radius r
o mass of hydrogen atom

xiii



m . mass inside base of envelope
min
M mass of star, or
bolometric magnitude . 12
M, mass of star, M (1 +6 Jwhere § ~ 10
N number of zones in model
P period of star, or
total pressure
Pa natural period of atmosphere
Pe natural period of envelope, or
electron pressure
Pg gas pressure
Pr radiation pressure
Po total pressure at surface of model
q artificial viscosity pressure
Q pulsation constant = P Vp, or
Lagrangian mass coordinate
T radius
r radius at base of envelope
R 1n r, Or
stellar radius
S natural log of Lagrangian mass coordinate
t time
T temperature, oY
effective temperature
Teff effective temperature
v velocity
vé center- of mass velocity of star
v specific volume = (density)-l
W InV
Z In T
K Rosseland mean opacity

xiv



Continuous opacity
monochromatic opacity
parameter defining implicit-explicit mixture, or

angle to line of sight
= SO&O/Teff
line center wavelength

Doppler width

mean molecular weight, or
cosine of angle to line of sight

natural log of total pressure

mean stellar density

Stefan-Boltzmann constant = 5.6692 x 107> erg cm 2

Rosseland mean optical depth
monochromatic optical depth
phase = fractional part of (t-to)/P

vector or matrix norm

deg

s-l



CHAPTER I

INTRODUCTION

A, Historical review

In 1784, John Goodricke discovered the variabiiity of 5 Cephei,
However not until 126 years after he published his findings was the
.importance of Cepheids as distance indicators realized. Although it
ﬁas known that Cepheids differed from other variables in that their
velocity curves are mirror images of their light curves (Belopsky
1895), it was not until 1912 that Leavitt discovered the-period-
luminosity relation (Pickering 1912). During Leavitt's study of
variable stars in the Small Magellanic Cloud, she noticed that the
brighter stars have longer periods. Since all stars in the Small
Magellanic Cloud are nearly the same distance from the earth, she
concluded that the correlation applied equally well to the absolute
magnitudes.

Unfortunately, the eérly attempts by Hertzsprung (1913) and
Shapley (1918) to find the zero point of the period-luminosity
relation neglected the effects of interstellar absorption and were
based on poor data. The resulting error of 175 almost exactly
compensated for the error introduced by using globular cluster
Cepheids to find the absolute magnitudes of RR Lyrae stars, When
the absolute magnitudgs of RR Lyrae stars were found independently,
the results supported Shapley's zero point. It was not until 1952
when Baade was unable to find RR Lyrae stars in M3i--stars that hé.

should have been able to see-~that the error was discovered (Baade



1956). The importance of Cepheids as distance indicators was
demonstrated by ‘this correction which increased both the distance
and time scales of the universe by a factor of two.

The discovery of the period-luminosity relation increased the
theoreticians’ interest in the nature of the Cepheid mechanism,
While it was originally thought that Cepheids were binaries,
difficulties reconciling this hypothesis with observations suggested
that the light and velocity variations were due to radial oscillations.
Although Ritter had suggested radial pulsations in 1879, and Shapley
had introduced the idea into the astronomical literature in 1914, it
was not until 1918 that a thorough study of linear, adiabatic pulsa-
tions was published by Eddington. In this work, he derived the
pericd-mean density relation, 1 p = Q a constant, and showed that
the sign of the second order terms dropped from the linearized equations
indicated that these terms were responsible for the observed asymmetry
of the light curves. He was unable to determine the nature of the
driving mechanism but suggested that an increase of the energy genera-
tion at minimum radius would produce the desired effect. A more.
troubling problem was the cause of the 90° phase lag. Linear, adiabatic
theory predicts that maximum light should be in phase with minimum
radius, not with maximum expansion velocity as observed. 1If the light
and velocity vary sinusoidally, this phase shift is 90°,

Partly because of these difficulties, geometric theories to explain
the light and velocity variations were not abandoned. However, in 1926,
Baade proposed a test of the pulsation theory. 1If the star is pulsating,

the ogbservations at two phases can be used in thes relations



hoobh (-1
L2 R22 T2
and 2 ’
, R, - R1 = v dt 4 | (x-2)

Since he had no knowledge of the color~temperatufe relation
and the necessary velbcity measureméﬁts had not Been made, he was
unable to apply this method; The firsf successful radius détermination
using this method was made by Bécker in 1940, but the resuits were not
very accurate. Wesselink (1946) improved Baade's method bﬁ selecting
phases of equal color. TIf equal color was assumed fo imply equal
temperature, mno temperature célibration was needed in equation (I-1).
The radius determinations made using Baade's, and later, Wesselink's
methods firmly established the wvalidity of the pulsation hypothesis,
The nature of the driving mechanism continued to be a problem.
Four possibilities had been suggesﬁéd:
1. € mechanism: | During.cﬁntractioﬁ, the énergy generation
| iﬁcreases. Since heat is added to the star when it is
hottést, thermal energy is converted into mechanical
energy (Eddington, 1918),
2. K mechanism: During contraction, the opacity in some region
increases. Since less heat is lost at maximum temperature,
;the-stability of the star is decreased (Zhevakin, 1953).
3. v mecﬁanism: An ionization zone will remain cool during
compression since some energy will be used to ionize the gas.
The gas will absorb heat when hottest,‘destabiliziné the

star (Cox, Cox, Olsen, King, Eilers, 1966).



4. 7 mechanism: At minimum radius, the increased curvature
of the outer stellar layers traps-radiation. Heat is
added at maximum temperature, and the stability of the
star is reduced (Baker, 1967).

The radius calculations of Becker (1940) indicated that the
relative radius variations in Cepheids were too small for thé r
mechanism to be significant. In 1950, Epstein showed that the radius
‘variations in the stellar core were so small that the ¢ mechanism
must be negligible. Linear, nonadiabatic calculations of Baker and
Kippenhahn (1962, 1965) and by Cox (1963) demonmstrated the effective-

ness of both the K and ¥ mechanisms in the HeIl ionization region.

B. Recent work

There were other problems that could not be investigated with.
the linear approximation. The nonlinear calculations of Christy, J.
Cox, A. Cox, and King, among others (see King and Cox 1968, and
Christy 1969, 1970 for references) have been used to study these
problems. These models show that Ehe present theories are adequate
to describe the gross features of the pulsation such as the approxi;
mate light and velocity amplitudes, the phase lag between radius and
temperature changes, and the shapes of the light and velocity curves.
Other questions remain upanswered, 8tobie's (1969c) calculations
show that there is a line in the period-luminosity plane separating
stars pulsating in the first harmonic from those pulsating in the
fundamental. In general, stars with a period less the 7d should be
pulsating in the first harmonic; those with a period over 7d, in the
fundamental. On the other hand, Fernie (1968) has shown that the

scatter in the empirical period-radius relation is reduced if some



Cepheids are treated as overtone pulsators. The stars that Fernie
suggests are overtone pulsators are not confined to the period range
predicted by Stobie. The discrepancy may be due to errors in the
radius determinations inherent in the Wesselink method. These
errors will be investigated in Chapter VI,

The nature and cause of the phase lag are also problems.
Castor (1968) has suggested that the phase lag is caused by the
hydrogen ionization region moving through mass as the star pulsates.
Using results of linear theory, he.conclud;s that the heat capacity
of this region delays light maximum, He states that the rate at
which the ionization region sweeps through mass should be in phase
with the luminosity. Christy (1968} has studied this problem with
his ndnlinear caleulations and finds that the phase shift through the
hydrogen ionization region is omnly 30°. The remainder of the shift
he attributes to skewing of the light curve by nonlinear effects.
King, Cox, Eilers, and Davey (1973}, on the other hand, find a 90°
phase shift in their linear calculations and conclude that the phase
lag is a nonadiabatic effect and not a nonlinear effect. The phase
lag will be investigated further in Chapter III.

Probably the most worrisome problem is the Cepheid mass
discrepancy. Stellar evolution calculations show that the mass

of a star near the Cepheid instability strip has a mass given by

Moy vv_L% exp [2.3 (X + 32)]

(Iben and Tuggle, 1972a). Masses of pulsating stars, on the other
hand, can be found in one of two ways. The first uses the period-

mean density relation, PNp = Q. Linear calculations can be used



.6
to find Q (Epstein 1950; Cogan 1970; Cox, King, and Stellingwerf 1972),
and, if the radius can be found, the relationéhip yields the pulsation
mass, M , It should be noted that M is sensitive to errors in the

Q Q

radius, since Mqtv R3. The second method uses the phase of the second
bump on the light curves of Cepheids with periods between 7d and 15d.
christy (1968) has proposed that this bump is the result of a pressure
wave which travels into the star, is reflected from the core, and
appears at the surface as a second bump on the next pulsation cycle.
The time it takes the pressure wave to travel to the core and back
ig a measure of the stellar radius, while the period of the star de-
pends ou both the mass and radius. It is possible, therefore, to
find the mass from the phase of the Bump, My« Unfortunately, MQ and
My are typically half of Mev°

Iben and Tuggle (1972a) have shown that the descrepancy between
Mev and M. can be removed by increasing the zero point of the period-

Q
luminosity relation by 02 or adjusting the (B-V)-Te relation

ff
slightly. Fricke, Stobie, and Strittmatter (1971, 1972), however,
have shown that the discrepancy cannot be removed if M§'is also
considered. Since van Genderen (1970) has suggested that more than
one mechanism produces bumps on Cepheid light curves, Mi.may be un-
reliable, This point is examined further in Chapter III.
More complete reviews of the literature have been given by

Rosseland (1949), Ledoux and Walraven (1958), King and Cox (i968),

and Fernie (1969).

C. _ Hydrodynamic Cephéid atmospheres

One of the difficulties with the models ‘discussed above is that

they do not adequately represent the Cepheid atmosphere. Since the



atmosphere is the only part of the star actually observed, the coarse
zoning and use of fhe diffusion approximation in fhe optically thin
zones of the models makes the comparison of the theoretical and observa-
tional results difficult. Recently Keller and Mutschlecner (1970, 1971)
and Bendt and Davis {1971) have attempted to remove some of these
difficulties by including the effects of radiative transfer. Their
emphasis, however, is still oﬁ the envéiope. In'Chapters‘Iv and V, an
attempt will be made to answéf some of the following questions raised
by the observations:

1. How should light and color variations be averaged to besﬁr

represent the equilibrium state of the star? For exampie,

there is a systematic difference between

: _ | P
P f "B/2.5
% f (B-v)dt and -2.5 log (4] 10 dt .
= 0 P
10°V/2:5 4
‘ 0
2. Why are weak lines asymmetric near phases of maximum velocity

t

while strong lines are often asymmetric near phases of minimum
velocity? For example, Bell and Rodgers (1964) find that the
A4508% line of FeIl is asymmetric in ® Dor near the phase of
maximum radius. |

3. Why are the cores of the strongest lines sometimes split?
Grenfell and Wallerstein (1969) and Wallerstein {1972) observe
splitting in the core of H that indicate velocity differences
of up to 100 %m s-l. Does this observation indicate actual mass

moticns or is there another explanation?



4. How well do the observed velocity curves represent the
mass motions of the star? Since the continuous opacity
scale changes during the pulsation cycle, the observed
velocities do ﬁot necessarily correspond to a given mass
element. The size of the discrepancy between the observed
-and actual velocity curves is not known.
5. What is ﬁhe physical nature of the variable microturbulence
observed in Cepheids and why is it occasionally supersonic?
These questions can best be answered bf computing hydrodynamic
model atmospheres. 1In Chapter 1L, the method used to compute the
models is presénted. Chapter IIi contaiﬂs a discussion of the
properties of the hydrodynamic envelopes including an investigation
of the phase lag and second bump. 1In the next two chapters the
models are treated as stellar atmospheres; Chapter IV contains a
discussion of the continuous spectrum; Chapter V, a discussion of
the line spectrum. The results obtained from these calculations are
used in Chapter VI to examine several methods used to find Cepheid
radii., Chapter VII summarizes the results and contains suggestions

for further work.



CHAPTER 1I-

METHOD OF COMPUTATION

A, Diffusion approximation models¥

1. Differential.and difference equations.

The hydrodynamic envelope of a Cepheid can be represented in a

Lagrangian coordinate system by the following differential equations:

3

LA & S -

T = v, (II-1)
3y 2 3 (P+q =-Gm_ , (11-2)
se T 4T T 3R =
3E = -3L - (P+4q) 3V (11-3)
2t 3 at
L = -2560m o> 3T | (I1-4)

3 K .,om
-%—: = v (II-5)

representing conservation of mass (II-1), momentum (II-2}, and
energy (II-3), energy transport by radiation (II-4), and the
definition of velocity (II-5). The symbols used are defined in the
Notation section. Convection and thermonuclear energy generation
have been neglected, and the diffusion approximation for radiative

transfer has been used. The boundary conditions are

* Most of the material in this section is from working notes prepared
by G. §. Kutter and W. M. Sparks. Kutter and Sparks (1972) contains a
summary of these notes.



10

base of enveiope: v=0, L=LO’ r=r, (I1-6)
T RN | ]
_surface: P PO’ T = % Teff(T+ 3) (II-7)

where LO and ro‘are constants, Po'is the pressure on the surface, and
T is the Rosseland mean optical depth. When the constitutive equations
defining P, q, E, and K as functions of T and V are included, the
differential equations represent a well-defined mathematical

problem.

This system of coupled, nonlinear, first-order, partial differen-
tial equations cannot be solved analytically. To solve the system of
equations numerically, the star is divided into N concentric mass
shells whose interfaces are indexed from 1 at the base of the envelope
to K+1 at the surface., These mass shells define a Lagrangian grid,

Q, = 1- m, / M, where M, = M(1+8) and § is a small number (typically

0 0

10-12) used to aveid logarithmic singularities at the surface

(Kippenhahn, Weigert, and Hofmeister 1967). The time grid is defined

-+ n
My . " L. t . In order to decrease

by a set of time steps At
the amount cof interpolation to be done, the variables v, L, and r are
defined at the interfaces while V, T, P, q, E, and K are defined at
the midpoints.

. . . nt+
The difference equations at time t L are

3 3
411 Ty - riq =
3M -
o & - Y,

Vi (II-8)




v - v n n
i i = (1 - a)Fi + 6 Fi
n+ %
At _
2
4 n
+ M . n (1 -8) (r,)
ol %1+ % i-% .
S VI
n ' n
Vi + 4 Vi - g
2, n+k _ + %
O (G 7 9 g
F, = 4 r Py o Byl . Smy
h
wnere MD sj_-{-% Sj_-% riz
Si4y o (Q; Quyy)
Ei- " E?- n :
o = Q-8 6 06y
t
n
q“—Hi V. i-% itk
n~% i-%
A T
where Gi_% = Ly Bi - B
M, Qi 8; = 544
n
- Pi."% Vi'% n+% 1"% ]
At
Wi~95 = in Vi-%,

11

(11-9)

(11-10)
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n
and q:.l‘:'z - 0 , ] , 1f Wi*% = Wi_;g
Ty (g mxp P70 Oy - Wy AE W < W

ik, 2
Vi A7)

q_ is discussed below;
° 2 T & T 4 Z -7
B 256 O 11 i i ity i-% (I1-11)
i = s <8
K 2
R, - R v P v
1 - i i
‘__fxg_ﬁ =(1-98) _~ + ) . (11-12)
¢ n .
At ri' ri‘

All quantities without a time superscript represeat values at time
ol
t

The parameter © allows the expression of the time derivatives
as a mixture of forward and backward differences. If 8 =1, the
equations are implicit; if 8 = 0, the equations are explicit.
Using © > 0 relaxes the restriction put on the time step by the
Courant condition. © = 1 was used to generate the stable model
since the time step could become arbitrarily large as the model
approached equilibrium. Using © < 0.5 in equations (II-8) to (II-12)
produces numerical instabilities as shown by Kutter and Sparks (1972).

The boundary conditions at the base of the envelope are
vy < 0, §1=L0/LG, =1, (11-13)

At the surface they are
2
4w v B T Pyr) .o G (11-14)
2

Mo 4 QN+1 - QN+§

[a]

N+1
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and

. [32_ ) IMO Kw (Q§+1 - QN{J. (II_]_S)
2 (e, - £)?

The constitutive equations are

P = b't/v+ P =gas + radiation pressure (11-16)
g = 3p - ; : -
E = 2b T + E, + Eire = thermal + radiation (11 1?)

+ ionization + excitation energy

where b' and Ei as well as K are tabulated as functions of T and

+a
V and depend on the composition. In the diffusion approximation

the radiation pressure Pr = % aTa, and the radiation energy

density Er =°aT4,

2. Solving the difference equatioms.

The first step in solving the difference equations is to
linearize by replacing the set vy Bi’ Ri’ Wi+%’ Zi+%l with the

' +5 + &R ' + .
setfvy +6 v, B FBB, Ry FOR, W W, 2, 40 244 |

2 2
For example r; is. replaced by ;i(1+26 Ri) and Pi+% by

Al 'S
PH% 1+ 3% ‘z 6W1+95 + 3z lw 621_95]
ity itk :

The increments are now treated as the unknowns of the system. This
leads to a system of 5S¢ algebraic equations in 5N + 5 unknowns

which combined with the 5 boundary conditions, & v, = & B, =

= _' =6 = £} - . )
631' 6WN+3/2 ZN+3/2 0, is a well-defined system of equations.
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An initial guess to the model at time tn+1 is obtained by
extrapolating from the preceding model. 1In general, the difference
equations will not be satisfied by the extrapolated wvariables.
Henyey, Forbes, and Gould (1964) have described a method for solving
the linearized equations. The system of equations for interface 2
is set up using the determinant elements given in Appendix A, and a
causs-Jordan reduction is performed to reduce this bleck to a nearly
diagonal form. This procedure is continued until the block for inter-
face N+l has been reduced. A schematic of the partially reduced
matrix is shown in figure II-1. Since only the inhomogenecus terms
and those elements denoted "MXM in the figure need be saved, less
computer memory is required tham with other methads.

After the matrix has been reduced to the form of Figure II-1,
a back solution is performed to: find the set of increments to be
added to the first guess. After updating the variables, the above
procedure is repeated until either the increments or the inhomogeneous
terms are sufficiently small.

Although the convergence is nearly quadratic for these models,
it can be accelerated. If the convergence is monotonic, the
increments can be multiplied by a number A > 1; if the convergence
is oscillatory, A < 1 can be used. In these calculations A = 0.9
produced the most rapid convergence,

3. Opacity Averaging.

When interpolations are needed, geometric means are used, i.e.,
- % . . . .
Ti = (TL+% . Ti-%) . The opacity, though, requires special handling.

In the hydrogen ionization region (HIR) the opacity differs by
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several orders of magnitude between neighboring zones. If the
geometric mean is used to findlthe opacity at the interface between
these two zones,llarge variations are observed in the light curve every
time a zone moves through the HIR. According to Stobie (1969a) this
effect is caused by using too large an opacity at the interface,
resulting in the zone on the high opacity side of the HIR not radia-
ting as efficiently as it should. The excess energy retained by this
zone is released in a very short time when the zone cools and its
opacity drops. This zoning effect can amount to 072 on the light
curve,

To avoid this problem, the opacity at the interface is defined

by
b 1-b

Ky = kg KT (1I-18)

where K+ is the larger opacity, K_ is the lower opacity, and
0< b< 1 is a free parameter. Tests were made to determine the

best value for b, With b = 0.5, the light curve was very jagged.

With E'<'0.2, the pulsation amplitude decreased. A value of b=

L=

did not noticeably affect the pulsation amplitude and produced a
light curve with bumps due to the zoning of less than 0%05. This

value of b was used throughout.

4, Artificial viscosity pressure.

The artificial viscosity pressure is an arbitrary quantity used
to limit the discont{ﬁuity at shock fronts (Richtmeyer and Mortomn
1967). 1If no aritifical viscosity is included, shock fronts hecome
smaller than one zone, and the time steps taken by the model become
. s

very short. The artificial viscosity pressure smooths the shock front

over several zones and thereby limits the discontinuity of the shock front.



16

Kutter and Sparks (1972) have shown that the artificial viscosity
pressure does not contribute to the mechanical flux and, therefore,
does not affect the conservation of energy.

Stobie (1969a) used a constant value of q0 (see equation II-10)
throughout the envelope and has shown that the pulsation amplitude
of his models decreases as the value of qo'increases. Shocks only
appear in the outer zones, though, and no artificial wviscosity is
needed deeper than the Hell iomization region. A variable % can be
used to account for this fact, i.e.,

(q.);, =9, exp (-P;_, /P)

0’ i-% e i-¥% ""R7?

where 9q is a free parameter of order unity, and PH was chosen as
the pressure in the HIR in the equilibrium model. Tests were run
to determine the best value of q,- With 9, < 2, shocks were large
and the time -step small; with qé>8, the pulsation amplitude decreased.
A value qe=4 was used and resulted in reasonably large time steps
without affecting the pulsation amplitude. In fact, the pulsation
amplitude was nearly independent of 1, for 2<qé<6. Changing PH
also had little effect on the pulsation as long as q0 was small in
the HeIl ionization region.

The properties of the models computed using the methods
presented in this section will be discussed in Chapter III and
compared to the radiative transfér models discussed below.

B. Radiative transfepcmodels.

1, Assumptions.

The diffusion approximation (equation II-4) represents the

radiation field very well if the gas is optically thick., In the
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atmosphere, however, the radiation field is not isotropic, and a

more exact solution to the transfer equation must be used. Imn

order to simplify the calculations, the following assumptions were

made:

The atmosphere of the model is plane paraliel, Bohm-

Vitense (1972) has shown that the effects of spherical
symmetry are important for yellow supergiants only if

Maor <7+

The gas is in local thermodynamic equilibrium (LTE).

This assumption is difficult to jus;ify for a gas as

tenuous as that of a Cepheid atmosphere but the problem

would be intractable without it. The results obtained by

Bell and Rodgers (1967), Parsons (1971b), and Schmidt

(1971a, b) using LTE indicate that the non-LTE effects are
not large,

The radiation field can be characterized by one frequency
group whose opacity is the Rosseland mean. This gray approxi=~
mation has been shown by Bendt and Davis (1971) to differ only
slightly from the multi-frequency group solution although it
may lead to an underestimate of the radiation pressure.

Terms of order v/c in the transfer equation can be ignored, .

1

Since velocities in Cepheids are typically less than 60 km s R

these terms should be negligible.

Eﬁergy transport is by radiation only. Although Cepheids ére
cool, the density in the envelopes is so low that convection
is inefficient. In any case, an adequate theory of time-

dependent convection is not available.
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With these assumptions, the transfer equation can be written

as
< (11-19)
dr

where w = cos @,

and d1 = Kdm.

The physical parameters needed to solve the hydrodynamic equations
(II-1) to (IX~5) are the radiation emergy density, E_s the luminosity,

L, and the radiation pressure, Pr’ which are given by

Er = f: dy , (I1-20)

16 7 f I dp, (11-21)

B = [ 142 4. (13-22)
1

2. Method of solution.

=
1

Due to the anisotropy of the radiation field, the transfer

equation cannot be directly included in the hydrodynamic equations
without introducing a great deal of complexity. It is possible to
avoid this complexity by noting that the Henyey method is a special
case of Newton's method for solving systems of nonlinear equations.
Newton's method can be expressed as

# o D ey, , (11-23)
where x is the vector of unknownsr(note that E(k) - E(kﬂl) is
the set of increments discussed in Sectiom II-A), £(x) is the
vector of inhomogeneous terms of the linearized equations, and J

is the Jacobian of f with respect tu x, i.e., J,, = Bfi/axj, and the

i}

superscript k counts the number of iterations. The system of equations
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s considered solved when ||£(x)||< €, where ¢ is the convergence
eriterion,

If the Jacobian is exact, Newton's method converges quad-
ratically (Ortega 1972); if J is only approximate, Newton's method
may still converge but the rate of convergence will be slower than
quadratic. This fact suggests a method for including the transfer
equation in a Henyey type code. 1f the code is currently using

MO I

I, £,(x), where D signifies that the diffusion
) _ (1)

approximation was used to compute the quantity, try x
JD —R(X)’ where R demotes that the transfer equation was used. The
convergence properties of this method are discussed below.

3. Converpgence of the modified Henyey methed.

Theorem: Given

gi(k+1)

1. =x® - e @), k0,12, L L (1I-24)

2. RF= JR - JD where JR is the Jacobian of £R with respect to X,

3. ;R(g(‘”)) = 0.

Show that for all e > 0, their exists 28 > 0 and an N> O
such that for || R || < &, \\E(k) - 5¢°)1|< ¢ for k> N. In other
words show that E(k) — __}E(m) as k = «,

Proof:

Equatlon (II-24) can be expressed as a Picard iteration, if.e.,

(k+l) (k)
X =g(x""), (I1-25)

where g(x)= 5--'J51£R(§>' By Ostrowski's theorem (Ortega 1972)
the series (II-25) cor=erges to Eeb) ifla(Jg) < 1 vhen Jg is evaluated
t 5&”) and if “3(0) - Ecn)lll is sufficiently small. Here Jg is the
Jacobian of gﬁg) and p(Jg) is the spectral radius (i.e., the largest

eigenvalue) of'Jg. The j component of g is

8y = %y 2<JD )ka
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Then
08, 3fk -1
= —md = § 2 -z B(J ) £ .
SR i o )]k Svm k oxo D kK
But f(_:g(m)) so at x(m)
3g,
e | () = -2 !
e 1% = %0 & 9 R em.
Therefore J_ =1 - J 1J =.1 = J_l(J + R) =-J-1R
g D "R D D D

and p (J)) @ s VS R = 1R L R
Choosing § = || J;)l 117 implies thatp(Jg)SH R|| /76<1 if and
onty if ||R}| .Jlh) <1

The iteration, therefore, converges if ‘]R‘[ < ||J;1|]-1.
Q. E. D.

This method is analogous to using the secant method as an approxi-
mation to the Newton-Raphson iteration in the one dimensicnal case.
Ortega (1972) has shown that the rate of convergence depends on the
value of P(Jg). 1f p(J )} = 0, the convergence is quadratic. If
p(Jg) > 0, as it is when R is non-zero, the convergence will be
slower than quadratic. Since the matrix R is not known, it is not
possible to verify a priori whether the iteration will converge to
the desired solution. Ortega (1972) has shown that, if the procedure
(0}

x@”) \l sufficiently small, it has converged

converges for || x
to the correct solution. Unfortunately, it is impossible to define
how small is sufficiently small. The radius of convergence can be
found only by trial and error. 1In this code, the first guess is kept
within the radius of convergence by limiting the time step.

4. Tests of the modified Henyey method.

As a check on this method, a model computed using gray, plane-

parallel radiative transfer was allowed to evolve to hydrostatic equilibrium,
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In the optically thick zones, the difference between the temperatures.
in the diffusion approximation and radiative transfer models was about
0.02%. In the optically thin zones, the model had a T(r) that agreed
with the exact solution of the gray transfer problem to better than
0.5%. A shock wavé was then sent through the atmosphere. In the
optically thin zones, 2 remperature inversion was observed at the
shock front. No such temperature inversion.was observed when the
diffusioﬁ approximation was used.

Using JD without modification produced very slow convergence.
In the diffusion approximation the radiation field at a given point
depends only on the local state of the gas, Wﬁen using the trans-
fer éqﬁation, however, the local radiation field depends on the state
of the gas throughout the model. 1In a very optically thin zone, the
radiation field is nearly independent of the local étate of the pas.
To account for this fact,KJD was modified by multiplying such termé
as 3B/3T by (1L - e 7). When these modifications were made to Iy
the rate of convergence impfoved without affecting the final results.
The coefficients of the increments used for these models are given
in Appendix B.

Using this method with gray, plane paraliel radiative transfer
takes about 30 minutes on the IBM 360/91 to compute one period of a
Cepheid with a period of 12 days. About 257 of this time is used
to solve the transfer‘equation. It would, therefore, take 8 additionmal
minutes per frequency point for the non-gray problem, roughly a factor
of four faster than the method of Keller and Mutschlecner (1970) and
comparable in speed to the variable Eddington approximation used by

Bendt and Davis (1971).
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This method can be easily modified to include such effects
as spherical symmetry or non-gray radiative transfer by replacing
the transfer subroutine used here. In fact, the method has wider
applicability. For example, a Henyey type evolution code could be
modified to include deviations‘from hydrostatiec equilibrium or
convective overshoot.

This modified Henyey method has been used to compute deep
envelope models of a 12d classical Cepheid. The following chapters

contain a discussion of the properties of these models.
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Schematic of the partially reduced matrix of the
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CHAPTER III

ENVELOPE OF THE MODEL

A, Equilibrium model,

1. Selection of the model.

There are two important criteria used to select a model for a
study such as this. First, the model should represent a well~
observed star to allow a comparison of theory with observation.
Since there are bright Cepheids of many periods, this criterion does
not greatly restrict the selection of model parametérs. Second, the
model should not present unnecessary computational problems. Stobie
(1969¢) has shown that short period Cepheids are moretlikely to be
pulsétiqg in a harmonic thao in the fundamental mode and some may be
pulsating in two modes simultaneously. Long period Cepheids also
present p;oblems.- These stars are cool enough that convection is
expected to be important. In addition, there is evidence of strong
-shocks in their atmospheres (Rodgers and Bell 1968; Dawe 1969).

Tﬁese two criteria indicate that the model should be chosen
to have a period between Sd and 15d. " One further criterion is the
ﬁvailability of other theoretical results. Both Kellef and
Mutschlecner (1970, 1971) and Bendt and Davis (1971) computed models
with periods of about 12d. For these reasons a model with a period
of 12d was selected having Teff=5700°K, L=5000y3, énd M=5M@(Stobie

1969c¢).

24
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2. fThe First (Guess

Once the model has been selected, the first guess to the model
at t=0 must be generated. Although experience has shown that the
radius of convergence of the Henyey method is large, a reasonably
accurate first guess to the initial model is needed. Simply taking
a published envelope model will not suffice since difference in
zoning, opacity, and mean molecular weight will cause problems.

Either the iteration for the first time step will not converge or

the model will develop such strong shogks that it will eject a large
Fractimof its mass. To avoid these probiems the static envelope code
used by Rose and Smith (1970, 1972) was modified to include the King
‘IVa tables for opacity and mean molecular weight (King 1972). Table
I1I~1 contains the number fractions of the elements included in cal-
culéting these tables.

After a.static envelope having the desired mass, luminosity, and
effective temperature was generated, the zoning criteria were selected.
The total mass of the envelope was chosen so that the base of the en-
velope had T=106 °K since Stobie (196%a) has shown that including
deeper zones does not appreciably affect the pulsation properties of
the model. In oréer to have enough optically thin zones to study the
atmosphere, a mass for the first zone of 1.5 k 1026 gm was selected.
It is also necessary to have enough zones in the model to perform the
numerical integration over depth with sufficient accuracy. The
results of Stobie (196§a) and Bendt and Davis (1971) indicate that at
least 50 zonés are required. Im order‘to minimize ény problems associ=~
ated with the zoning, 100 zones were used. This combination of 100

zones, mass of the surface zone of 1.5 x 1026 gm, and mass of the
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envelope of 0.5 My reéulted in a ratio of the mass of neighboring
zones of 1.15. Once these parameters were selected, it was possible
to interpolate in the static envelope model to obtain a first guess
to the model at t=0. |

3. Relaxation to equilibrium,

The first guess to the model at t=0 was used as input to the
hydrodynamic code. 8Since the static envelope code included
convection and the hydrodynamic'code did not, the model was not
duite in hydrostatic or thermal équilibfium. In order to decrease
the computer time required for the model to.evolve to equilibrium,
the pulsation was artificially damped by converting some of the kinetic
energy into thermal energy at each time step. With this damping the
model reached equilibrium in about 4000 time steps.

The equilibrium model was found to have a slightly different
effective temperature than the static envelope model. Some adjustment
was, therefore, necessary. The two free parameters that determine the
position of the model in the H-R diagram are the luminosity incident on
the lower boundary, Ly, and the radius of the lower boundary, r,. In
equilibrium the luminosity leawving the surface must be eqﬁal to LO'

Thus, if L0 is the luminosity selected for the static model, the

‘effective temperature of the model can be changed by varying T If

0.
r, is decreased, the model becomes more compressed, and Teff increases;
if r, is increased, Teff decreases, After changing .

be forced to return to equilibrium. This procedure of changing r

the model must

0

. and forcing the model to return to equilibrium was continued until the

model had the desired. effective temperature,
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The final equilibrium model, STB, has L=5000 Ly, M=3M,, Teff =
5730°K, and R,=71.7 Ry. STB has 25 optically thin zonmes ranging from
T=14.6x 10-‘4 to T = 3., Due to the large opacity in the hydrogen ioniza-
tion region, the first optically thick zone is at T = 580, It is
possible, therefore, to refer to the optically thin zones as the atmo-=
sphere without ambiguity. Sinece the atmosphere of STB has a thickness
of only 1% of the radius of the model, the plane parallel assumption
used in the radiative transfer calculations is justified.

Table IIT-2 contains the parameters of the final equilibrium
envelope, and figures II1I-1 to III-3 show the logarithm of the tem-
perature, pressure, and density, respectively, versus the logarithm of
Lagrangian mass coordinate. Note the large temperature increase and
the density inversion in the hydrogen ionization region. Both of
these effects would be smaller, but not eliminated, if convection
were included in the model (Latour 1970; Eoll 1973). However, the time
it takes a convective element to travel one mixing length is comparable
to the period of the Cepheid. Convection canmnot be included correctly
in the hydrodynamic models until a theory of time dependent convection

is developed.

B. Full amplitude model.

1. Growth to full amplitude.

Once a static envelope with the desired luminesity and effective
temperéture has been generated, the pulsation can be initiated in one
of two ways, by soft self-excitation or by hard self-excitation
(Ledoux and Walraven 1958). The former approach allows the pulsation
'

to grow from the computer round-off "moise" {Cox and Giuli 1968,
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pg 1125). The soft self-excitation requires no prior knowledge of
the pulsation mode or thé full amplitude velocity distribution, but
the model must be followed for S to 10 e-folding times. The
second approach has been used by Christy (1968) and Stobie (1969a) and
consists of imposing a finite amplitude wvelocity distribution on the
‘static model. The initial velocity field is usually chosen so that
the initial kinetic energy amplitude is about 25% of its full amplitude
value, Tf the imposed velocity distribution does not correspond to
nearly a pure mode, transients will have a large amplitude and will
take several e-folding times to die out., This method assumes a sub-
stantial amount of information about the full amplitude pulsation, but
it allows full amplitude to be reached in only 2 or 3 e-folding times,
Since Stobie (1969a) gives the initial velocity distribution for a wide
variety of Cepheid models, and because e-folding times of Cepheids are
of the order of 100 periods, the hard self-excitation approach was
used. '

Since the radiative transfer models take about five times more
computing time per period than the diffusion approximation models,
the diffusion approximation was used in gemerating the full amplitude

model., The initial velocity distribution was given by

6

v = v (r / rp) ,
where rp = radius at 7 = 1,
and Vg = 10 km 1.
The maximum of the total kinetic energy in the envelope during a period,

-KEmax’ provides the most reliable measure of the growth of the pulsation.

After initiating the pulsation, it was found that KEmax decreased for
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two periods as the high order harmonics introduced by the initial
veiocity distribution died out. After about 8 periods these transients
had a much lower amplitude than the fundamental mode.

In order to speed the growth to full amplitude, an artificial
amplification was used (Stobie 1969a). Choosing a phase when all
zones were moving outward with nearly their maximum velocity, the
velocity in each zone was multiplied by 1;5, doubling the kinetic
energy. Although this procedure introduced some transients, they
quickly died out. At period 26 the methed of opacity averaging at
“the HIR was changed to the method described in Chapter II.. This
change greatiy reduced the zoning effects resulting in fewer shocks
and, therefore, less damping due to the artificial viscosity. The
rate of increase of KEmax then increased. The model was then allowed
to pulsate for another 120 periqds, about 3 e-folding times (Stobie
1965¢). At this point KEmax was increasing by only 0.02% per period.
Period 150 was chosen as the full amplitude, diffusion approximation
model, IHC (for implicit hydrodynamic code). Figure III-4 shows the
approach of KEmaX to full amplitude.

THC was used as the starting model for the radiative transfer
calculation., As can be seen in figure III-4, I(E'max decreased smoothly
(indicating few transients) and approached a value about 10% lower
than KEmax in THC. After 30 more periods KEmax was decreasing by less
than 0.1% per period./ Period 180 was chosen as the full amplitude
radiative transfer model, RDT. The smaller amplitude of RDT relative
to IHC is due to changes in the structure of, and, therefore, the
work done by, zones passing through the HIR., The ratio of frav in

RDT to fPdV in IHC for those zones passing through the HIR is 0.85
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- accounting for the lower amplitude of RDT.

2. Properties of the full amplitude models.

The period of RDT is 12?05, which combined with the mass and
radius of STB gives Q = P¢[57;5—_='0.046. christy {1968) has shown
that Q=0.022(R /RO)%(MG / M)%. Using the radius and mass of STB

gives Q = 0.043 in good agreement with RDT.

A comparison between the full amplitude RDT and IHC models
shows that, aside from differences due to the lower amplitude of
RDT, the two models produce nearly identical light and velocity
curves confirming the results of Bendt and Davis (1971} and Davisl
(1971). The major difference between the models is that THC never
has temperature inversions in the atmosphere While.RDT does whenever
there are sufficiently strong shocks present.

It is not difficult to understand this difference between the
models. Consider & stellar atmosphere in radiative equilibrium.
In the diffusion approximation

L~dB="2s0 "B

If the temperature in zone i+l is increased, the luminosity will .
increase by an amount
4811

~ T
Tiv1 T 71

AL ~

IfT - Ti is.sﬁall, as it is in the atmosphere, AL will be large.

i+l
The excess thermal energy in zone i+l will be radiated away and the

atmosphere will rapidly return to equilibrium. On the other hand,

the luminosity given by the transfer equation is

o T.
h s
L~.£ B(&)E,(£-7)dt - /0‘ B(E)E, (7 ~t)dt,
o
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where E2 is the second exponential integral, Perturbing the temperature

in zone i+l results in

T
i+l
AL ~ A'Bi+1 f Ez(t-'ri)dt.
l'r

i

If Ti+1 - Ti is small,

AL ~ ABi+1 : (Ti+1-Ti).
In the atmosphere, theﬁ, AL will be small and the return to equilibrium
will be slow. This behavior of the radiative fransfer solution has
been discussed by Whitney (1967).

Since the temperature inversions in RDT occur only above 7=0.01,
they will be important only for spectral lines and will have only a
small effect on the continuam. In fact, the continuvum forming regions
of the atmosphere are nearly in fadiative equilibrium at nearly all
phases as predicted by!ﬂhitney‘(1967). In the following discussion all
values will be taken from RDT, but the conclusions reached apply
equally well to IHC.

The relative radius change

AR _ " Rvan
R ' Rypan

- is in good agreement with observed values (Nikolov and Tsvetkov

= 0.11

1972), as is the velocity amplitude v._ -v . = 45 km se.a::_1 (Stibbs

S max min
1955). Figure III-5 shows the bolometric light curve. The small
ripples on the light curve are due to the zoning effects discussed in
the preceding chapter and are small enough not to confuse the inter-

pretation of the main features. The asymmetry of the light curve

falls within the observed range (Nikolov 1968). 1In contrast, the
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models of keller and Mutchlecner (1970, 1971} and Bendt and Davis
(1971) are too asymmetric in the sense that the rising branches of
their light curves are too steep. Since they use a shallow envelope
driven from below by a coarsely zoned deep envelope model, and RDT
was computed using fine zoning throughout, this difference is
probably due to zoning.

Aside from the overall variation of the light curve and the
zoning effects, there are three features of interest, a sudden
decrease in light output at phase ? = 0.15, a shoulder on the rising
branch near ¢ = 0.2, and 2 bump on the falling branch near & = 0.6.
All three features show zoning effects superimposed on them and,
therefore, are probably not due to the zoning. ' The shoulder on the
rising branch and the bump on the falling branch will be discussed
in the next section but it should be noted that Cepheids with periods
near 1od often show similar features (van Genderen 1970).

The dip at ¢ = 0.15 is disturbing since if is not 6bservéd
(Nikolov 1968). Bendt and Davis (1971) #lso see a similar feature
on their light curves as do King, Cox, Eilers, and Davey (1973) in
their coarsely zoned diffusion approximation model of an 11?5 Cepheid.
Since this feature is usually dismissed as a zoning effect, an
attempt was made to find its cause, A detailed search of the computer
output revealed nothing related to the zoning that could cause the dip.
Hillendahl (1968) attributes the feature to the artificial viscosity.
There is a pressure wave moving outward that produces the shoulder
at ¥ = 0.2, The artificial viscosity causes the pressure to rise
ahead of the temperature. The pressure rise causes the density to in-

crease which, in turn, raises the opacity. When this region of in-
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creased opacity reaches T=1, the amount of light emitted decreases.
An opacity increase of 3% is sufficient to produce the dip observed
on the theoretical light curve. The same mechanism will produce
a dip preceding the bump at ® = 0.6. The bump on the falling branch
would look more like a shoulder if the artificial viscosity could be
_removed.

Figure III-6 shows the velocity corresponding to 7 = 0.2. The
shoulder on the rising branch cannot be seen, but the bump on the
falling branch is quite pronounced. Since the velocity curves are
usually used to classify the bumps in the models, this model would be
described as having a single bump on the falling branch. According
to the Hertzsprung sequence & Cepheid with a period of 12d should have
& bump on the rising branch. If the velocity curve was used to
classify this model, it would be concluded that the model had the
wrong mass, This problem of classifying bumps on the light curves
can contribute to the Cepheid mass discrepancy (see Chapter I).

Figure III-7 shows the velocity curves for T = 10-3, 107 1
and for a mass zone having T = 0.2 in STB, The feature on the
rising branch appears only for the most optically thin zones and
may be responsible for the peculiarities in the cores of the Ca II
H and K lines observed at this phase (Kraft 1967). The progressive
nature of the wave travelling through the atmosphere 1s readily
apparent. Substantial velocity gradients are present in the atmo-
sphere from & = 0.3 to’d = 0.7, The velocify curve following a given
mass element is the same as that for T = 1 except in the vicinity of
the second bump even though 7 = 1 moves through more than 10 mass

zones, This point will be comsidered further in Chapter VI.
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3. Phase lag.

The phase lag between the light and velocity curves, A 2,
depends on which velocity curve is used., The phase shift ranges
fromA & = 0.06 for T = L to & & = 0 for T = 10°>, Linear,
adiabatic theory predicts that light maximum should occur at minimum
radius, not near equilibrium radius as observed. Explanations for
the phase lag range from Eddington's suggestion in 1917 that the
phase lag is a natural consequence of the processes limiting the
amplitude of the star to Christy's in 1968 which attributes the phase
lag to a skewing of the light curve due to non-linear effects. Since
the linear calculations of King, Cox, Eilers, and Davey (1973) show
the phase lag, it is probable that the lag is the result of non-
adiabatic, not non-linear effects.

Castor (1968) treating the HIR as a discontinuity, has sug-
gested that a theory proposed by Eddington (1926) is correct.

The large heat capacity of the HIR delays light maximum. Since

the HIR lies at the top of the transition region between the quasi-
adiabatic envelope and the non-adiabatic atmosphere, the luminosity
gets "frozen-in" at the top of the HIR,

The phase lag can be seen in Figure III-8 which is a 3-D plot
showing the variation of luminosity, L/LSTB? as a function of mass
point and phase as viewed from the'center of the star., Note that
phase increases from right to left. Thé inset is a schematic repre-
sentation and will be used to define points of reference in the figure.
Point A is in the He II ionization zone., This part of the model is
nearly adiabatic, and, as expected, the luminosity maximum coincides

with radius minimum. By the time the He I ionization zone is reached

at point B, there is a substantial phase shift. A further, small phase
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shift is introduced in the HIR, the region between B and C. The
freezing-in" of the flux in the atmosphere, point C, is seen as
luminosity perturbations ﬁoving outward at constant phase.

Plate I is a different representation of the same data and shows
two periods of the motion. The abscissa is the time coordinate, the
ordinate is the Lagrangian radial coordinate. Large values of L/LSTB
appear as bright areas while small values appear dark, The basé of
the envelope is at the top of the figure. The bright area nearest
the top of the figure corresponds to point A in figure III-8. As can
be seen the phase of Light maximum increases continuously until the
atmosphere is reached. At this point the flux becomes "frozen-in" and
the maximum moves outward at constant phase. The model, therefore,
suggests that the HIR plays only a small role in generating the phase
shift. The phase shift appears to vary continuously through the
transition region between the quasiadiabatic envelope and the non~
adiabatic atmosphere.

Plate I shows another interesting phenomenon. In the He II joniza-
tion region light minimum follows light maximum by about half the period,
In the He I ionization zone this phase difference is still nearly half
the period. Only in the atmosphere is the light curve very asymmetric.
The asymmetry of the light curve is, therefore, either an atmospheric
phenomenon or due to the HIR. This effect will be discussed in the

next section.

C. Cause of the second bumps.

1. Christy mechanism,

In 1926, Hertzsprung classified Cepheids by the shape of their

light curves (Payne-Gaposhkin 1951). Short period Cepheids have very
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asymmetric, smooth light curves. As the period increases the curves
become more symmetric and a second bump appears on the falling branch
in Cepheids with a period near 7d. This bump moves closer to the
primary maximum umtil at 10d the bump appears to coincide with maximum

~light. Near a period of 12d the light curves often show two shoulders,
one on the rising and one on the falling branch. Cepheids with longer
periods show a single bump on the risiﬁg branch. Near a 15d period
the curves again become smooth and asymmetric. Figure IXI-9 taken
from Payne-Gapbshkin (1951) illustrates this sequence.

Christy (1970) using the results of his nonlinear calculations
explains the second bump ip the following manner. Near the phase of

‘maximum compression the He iI ionization zone is rapidly heating
causing the zone to expand. This expansion sends a pressure wave out-
ward winich appears at light maximum, The expansion also sends a pres-
sure wave inward which is reflectad by'the core and appears at the
surface during the next cycle as a second bump. He then finds that
the time delay, D (in days), can be used to find the radius of the
model from R / Ry = 4.05D. Since the period of the star depends on
both its mass and radius, Christy can find both the mass and radius
of a star from its period and the phase of its bump. 1In general,
masses found in this way are about half those predicted by stellar
evolution theory.

It should be noted, however, that the Hertzsprung sequence is an
average property of Cerheids. Van Genderen (1970) has shown that the
phase of tﬁé second bump of individual Cepheids having the same period
varies over a wide range. He also shows that, while the Hertzsprung

sequence holds on the average up to a period of 10d, there is almost
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no correlation between bump phase and period from 10  to 30 .
Beyond 30d'the bump appears near minimum light. In those Cepheids
having two bumps on their light curves, he suggests that two inde-
pendent phenomena are operating.

2, Hillendahl's mechanism.

The mechanism proposed by Christy explains part of the Hertz-
sprung sequence. It does not, however, explain the double bump
Cepheids. Another mechanism is needed. Figure III-10 shows the
velocity as a function of mass pbin; and phase, The inset will be
used to define points of interest in the figure, Effects due to the
zoning have been labelled "z" and are quite small compared to the
main features, The shaded area in the inset shows the bottom side
of the surface while the dashed line follows the HIR. The point
corresponding to maximum light is- labelled "A"; B is the shoulder on
the rising branch of the light curve, and C.is the bump_on the falling
branch. The line marked D is an inward moving pressure wave discussed
below, and line E indicates the location of the inward moving pressure
wave described by Christy (1970).

Figure III-11 is a different view of the same data, After reaching
maximum expansion velocity nedr D the atmosphere begins to s5low down
under the infiuence of gravity along line E. However, a disturbance
originating at point A changes the sign of the acceleration and propo-
gates both outward toward B and inward toward C, The velociiy reaches
4 second maximum near F and then decreases under the influence of
gravity along G, The curve marked H indicates the velocity curve
deeper in the envelope. Figure II1-12 shows the origin of the inward

and cutward moviug pressure waves. The line marked A is the locus of
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pdints of maximum velocity in the atmnspherg; line B marks the locus
of points of maximum velocity in the envelope. As is evident, the
atmosphere reaches maximum velocity before the envelope and starts

to slow down while the envelope is still accelerating‘compressing a
region near the HIR. This compression generates pressure waves moving
both outward (line AB on figure III-11) and inward (line AC on figure
I1I-11). Line D(E) shows the inward (outward) moving pressure dis-
turbance described by Christy (1970).

Figure III-13 clearly shows that the Christy pressure wave from
the preceding cycle (line C) arrives at the surface of the model near
light maximum (A), not near the second bump (B). 1In fact, this
pressure wave reaches T = 1 very near %= 0.2 and is responsible for
the shoulder on the rising branch of the light cuarve,

Figure ITII-14 illustrates one possible explanation for the second
bump proposed by Hillendahl (1969, 1970). The points A, B, and C
correspond to the three local méxima on the light curve at phases & = 0,2,
0.35, 0.6, respectively, The Christy pressure wave reaches the top of
the envelope at point D and is responsible for the feature at B.

.According to Hillendahl, the local velocity minimum at E is the result
of a rarefaction wave moving inward. The feature at ¢ can then be
attributed to a secondary, "blow-off" shock. The inward moving
pressure disturbance (line ¢ in figure III-~12) is then a second rare-
faction wave. In Hillendahl's interpretationm, the features labelled

z in figure III-10 are further blow-off shocks. This effect can also
be seen in plate II. Here large positive velocities appear bright,
zero velocity gray, and large negative velocities dark. Two periods

are shown, i.e., phase increases from 0 to 2 from left to right, and
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the base of the envelope is at the top of the figure. The lpcal
velocity minimum preceding the second bump (line AB in figure III-11)
can be followed backward in time into thé envelope. Hillendahi |
considers this minimum to be a result of the rarefaction wave follow-
ing the deep envelope pressure disturbance (line C in figure ITI-13).
The inward moving pressure wave (line AC in figure III-1l) he associates
with a second rarefaction,

There are several problems with this interpretation. Hillendahl
predicts as many as 5 blow-off shocks per period. All features on
the light and velocity curves following the bump on the falling branch
can be agssociated with zones moving through the HIR. While these
zoning effects may be masking the secondary blow-off shocks, it is
unlikely that the shocks would not be seen at all. Another difficulty
is the inward moving pressure wave (AC in figure III-11)., 1If this
feature is to be associated with rarefaction following the secondary
shock causing the bump, it should follow the local velocity maximum.
It does not. It appears to originate before theISecond velocity maxi-
mum, The Christy mechanism cannot explain this feature either. Hillen-
dahl's mechanism also predicts that all Cepheids should have a second
bump on the falling branch since the primary expansion should always

cause a secondary, blow-off shock,

3. Atmosphéric oscillation mechanism.

Since neither Christy's nor Hillenda hl's mechanisms adequately ex-
plain the Hertzsprung sequence a third mechdnism was sought. Inspection
of figure III-1l1 shows that the surface layers appear to be pulsating

nearly sinusoidally from point J to point B with a period roughly 2/3
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the period of the envelope. Figure III-15 shows the power spectra
of two zones obtained from Fourier transforms of their velocity
curves. The dashed line refers to a zone at the top of the envelope.
No secondary periodicities are apparent with less than 3 times the
frequency associated with the envelope period, v .. The amplitude of

0

the feature nearv = ¢u0 is so0 low that it may be-due to noise genera-
ted in the transform process or to the inward moving pressure wave.
The solid line, referring to an atmospheric zone, indicates a secondary
periodicity near ZUO with about 1/3 the amplitude of the main pulsation.
‘The higher frequency features are probably the result of zoning effects
or noise generated in the transform process.

The secondary periodicity can be understood in the following
analysis which was used by Christy (1962) in an early attempt to

predict the properties of Cepheid atmospheres. According to Lamb

(1932) the critical period of an isothermal atmosphere is given by

F

g = v ), (111-1)

wheFe ‘sz
‘ v 25
8 umﬂ

Y 5/3 for a neutral gas,
R ..

R (R/Rg)
Substituting values taken from STB shows that
(R/Ru)z
(M/M,)

f

p_ = 090025 (111-2)

which gives P = 2?5 for STB. This period is too small to account

for the secondary periodicity seen in the atmosphere of the model.
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Gough, Ostriker, and Stobie (1965), on the other hand, have
shown that a better approximation to the Cepheid atmosphere is an-
atmosphere with a constant temperature lapse rate. Choosing values

from STB results in

{(I11-3)

or Pa = 7d Which is about 0.6 times the period of RDT. It appears
that the bump on the light curve of RDT occurs because the atmospheric
period, Pa’ is comparable to, but less than, the envelope period, Pe.

The occurrence of two bumps on Cepheid light curves can be ex-
plained qualitatively as follows: Cepheids with periods less than 7d
- have Pa < 0.5 Pe. Since the atmosphere is being driven far from
resonance, the amplitude of the atmospheric mode is low, and the
atmosphere follows the motion of the emvelope. Starting at 7d, the
driving frequency approaches the resonant frequency of the atmosphere,
but mot until abo.utrlod is the amplitude of the atmnspherié mode large
enough to producg an observable shock from the compressionrof the HIR.
The multiple bumps seen on the rising branch of ultra-violet light
curves of B Dopadus by Hutchinson (1974) may indicate that the atmo-
sphere is beginning to produce these shocks. In the perioed range 7d
to 10d the bumps appeaging on the falling branch are produced by the
Christy mechanism. From IOd to 12d the Christy ﬁump appears on the
rising branch and ;he atmospheric oscillation bump appears onmn the
falling branch., As thy period increases beyond 12d the amplitude of
the atmospheric mode grows, but the compression of the HIR decreases
as the atmosphere and envelope begin to oscillate in phase. There

-

~d ; . ,
are no bumps from 15 to 30 since the compression of the HIR is too

o

w
3
1
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small to produce obsefvablé shocks. At about ZSd P, =P, theA‘ |
atmosphere is oscillating at its maximum amplitude, but there are mno
bumps since the atmosphere and envélope are always in phase. Beyoﬁd
30d bumps appear near minimum light as the envelope begins to slow
down befﬁre the atmosphere leading to compression of the HIR near
minimum light.

As shownrby Payne-Gaposhkin (1951) Cepheids with periods near
10d are ancmalous compared to those at 8d and 12d, There is a dip in
the velocity amplitude-period relation and in the upper envelope of
the light amplitude-period relation near P = lOd. The anomaly can be:
understood if érimarily envelope oscillations are being observed up

to 8d,—and atmospheric. oscillations are being observed beyond 12d.

4. Ratio of the atmosphere to the envelope peried.

Further calculations will be needed to check the validity of the
above picture, bﬁt it can be examined for consistency using published
relations among L, Pe’ R, and M. In the following discussion, R and
M are given in solar units and periods in days. In logarithmic form,

equation (II1-3) becomes
log Pa = ~2,14 + 2 log R - log M (I11-4)

.whilé the relation Pe p/po = Q(M,R) results in

iog Pe =a+blog R+ c logM, (111-5)

Combining the period-luminosity law and the mass-luminosity relation
results in an equation of the form

log M = d log Pe + e, , (III-6)
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where the constants d and e depend on the choice of a mass-luminosity
relation, The scatter introduced into (III-6) by multiple crossings
of the instability strip will be small since 90% of the observed
Cepheidslare expected to be in the second crossing (Iben 1966).
Similarly, Fernie (1968) has shown that a relationship of the form

log R = £ log Pe + g (I11-7)

can be expected. If equations (III-6) and (III-7) are to be
consistent with (III-5)
a + bg + ce = 0, (1I11-8)

bf 4+ ed = 1

The values of the constants in equations (III-5) to ({III-7)
can be found in the literature. Christy\(lQ?O) and Fricke,
Stobie, and Strittmatter (1972) give essentially the same values
for the constants in (III-5), namely

log P, = ~1.62 + 1,72 1log R ~ 0.68 log M, (I11-9)
Using Stobie's (1969¢c) mass-luminosity law gives

log M = 0.34 log P+ 0.33, (III-10)
where the constant, e, has been adjusted slightly to give the correct
mass for RDT. Fernie (1968) has used the Wesselink method to find

log R = 0.56 log P_ + 1.24, (T11-11)
where the zero point has been adjusﬁed downward as suggested by
Parsons (1972).

Equations (ITI-9) to (III-~11) do not satisfy the consistency
conditions (ITI-8). If the perioﬁ~radius law, which was derived
directly from observati&ns, is redefined so the consistency conditions
are satisfied

log K = 0.72 log P_ + 1.07, (I11-12)



The large change in the coefficients in the period-radius relation
indicates thét either the wrong mass-luminosity léw was used, or
there are systematic errors in the fadii determined using the
Wesselink method. The former possibility will be investigated below,
and the latter in Chapter VI. Equation (I1I-12) agrees almost ex-
actly with the relationship given by Wooley and Carter (1973) indi-
cating an error in the Wesselink method as used by Fernie and Parsons.

The adopted relatjionships are

log P, = -1.62 + 1.72 log R - 0.68 log M, (III-13)
log M = 0.34 log P + 0.33, (I11-14)
log R = 0.72 log Pe.+ 1.07 (I1I-15)
log Pa= -2.14 + 2 log R - log M. _ {1I1I-16)

Substituting equations (III-14) and (III-15) into {III-16) gives
log Pa = 1,10 log Pe - 0.33,
or log (Pa/Pe) = O.iO log Pe - 0.33 (II1-17)
Equation (III-17) indicates'Pa = Pe near log Pe = 3 which does not
support the explanation of the double bump Cepheids give above.
Repeating this analysis using the results of stellar evolution.
theory as given by Iben and Tuggle (1972a) and again defining the

period-radius law from the consistency conditions gives

log P = -1.53 + 1.73 log R - 0.79 log M, (I11-18)
log M = 0.30 log P_ + 0.56, (1II-19)
log R-= 0.72 log P_ + 1.14. (I1I-20)

Note that the period-:3dius law (III-20) is nearly the same as
(I1I-15). The discrepancy with the observed relation (I11-11) is,
therefore, not due to the choice of a particular mass-luminosity law.

Substituting (III~19) and (III-20) into (IIL-16) gives
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log (Pa/Pe) = 0.21 log P_ - 0.30, (II1-21)
indicating P = Pe near Pe = 30d.

One of two conclusions can be reached from this analyéis. Either
the analysis of the atmospheric oscillations is in error, and the
bump on the falling branch of the light curve has a different origin,
or the mass-luminosity reldtion predicted by evolution theory is
more nearly correct than that of pulsation theory. There is other
evidence to support the evolution masses. If masses determined from
the phase of the second bump are ignored, both Fricke, Stoble, and
Strittmatter (1971, 1972) and Iben and Tuggle (1972, a,b) can explain
the mass discrepancy. Since the pulsation masses depend critically
on the calibration of the observations, reasonably small changes in
the Teff vs. (B-V) relation, the helium abundance, and the zero poiﬂt
of the period-luminosity 1aﬁ can remove the mass discrepancy. But,

i f there are two mechanisms which can produce bumps on the light curves,
the bump masses should be ignored,

Although this discussion favors the evolution masses, the
question cannot be settled without computing more models with many
optically thin zones, a time'conSuming procedure. Additiomally,
more accurate values for the constants in equatiomns (III-5) to (III-?)
are needed. 1In particular, the variation of the buléation constant,
Q, with mass.andrradius is not well-known. The results of Cogan (1970),
Cox, King, and Stellinwerf (1972) are considerably different from
those of Christy (1970), Fricke, Stobie, and Strittmatter (1972), and
Parsons and Boﬁw (1971). Further study including the effects of

convection is needed.
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TABLE III-1
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ABUNDANCE

9,07156E-1
9,13793E-2
2 .84443E-4
8.01673E-5

6.36793E-4

3.58809E~4
1.42560E-6
1.79473E-5
1.18576E-6
2.27738E-5
2.38399E~5
3.69354E-5
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Figure IIT-8. Luminosity vs. mass point and phase. Every second mass
point has been plotted. Point A is in the Hell ionization
zone; point B, the top of the quasi-adiabatic envelopes
peint C, the atmosphere.
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CHAPTER IV

CONTINUOUS. SPECTRUM

A. Atmosphere calculation.

1. Snapshot dpproach.

In the preceding chapters the model has been discussed in terms
of pulsation theory. Since many optically thin zqﬁes were included
in the calculation of the hydrodynamic models, it is also possible te
diseuss,tﬁe model in terms of stellér atmospheres. The-hydfodynamic
equations (II-1) to (II-5) are most easily solved if a Lagraﬁgian
mass coordinate is used as the independent variable. On the other
hand, the light emerging from a model is more easily computed if the
optical depth, T, is ihe independent variable, The physical parameters
of primary intere§ﬁ are also different. TFor example, while the total
pressure is needed to calculate the hydrodynamic motions, the eleétron
pressure is more important for determining the emergent spectrum.

To facilifate the stellar atmosphere calculations, the optically
thin zones of the hydrodynamic modelé were usedAas snapshots of the
atmospheric structure. Since al]l relevant physiﬁal variables change
on & time scale much greater than the time it takes a photon to diffuse
through the atﬁospher%, no large errors are introduced by using this |
snapshot approximatiﬁn. This assumption is the éame-one made in
dropping terms of order v/c in the transfer equation. After describing

the methods used to convert the hydrodynamic models to a form suitable
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for the atmosphere calculations, the properties of the continuous

spectrum will be discussed in the remainder of this chapter. Chapter V
will be devoted to a discussion of the line spectrunm.

2. Converting the models.

The hydrodynamic models at 200 phases at equal phase intervals
of 0.005 period were converted to a form with Rosseland mean optical
depth, dr = Kpdr, as the independent variable. The atmospheric models
were computed starting et the surface and were continued inward until
the temperature reached 25,000°K. -In all cases the base of the
atmosphere was at a large enough optical depth that including more
points would not change the computed spectrum.

Before computing the emergent spectrum, the electron pressure,
Pe’ had to be determined. Since Pe depends on the number of free
electrons determined from the Saha equation, and Pe is needed to
compute the jonization fractions, an iteration must be performed to
find Pe. This iteration is described in Appendix €. Knowing the
variation of temperature, density, radius, and electron pressure with
optical depth makes it possible to cbmpute the spectral energy dis-
tributions of the models. The monochromatic opacity, Kj ,was computed
with a code written by Bell (19?4) that includes the continuous
| opacities of H, H , H,, HE, He, He , Sil, MgI and Rayleigh scattering.

Next the monochromatic optical depth scale was computed from

T K
, . A
"l'R ==f n dr,
0

and the transfer equation was solved to give the flux at the desired

wavelength, F,.



The wavelength region from 912} to Su was divided into 21
wavelength bands whose boundaries occur at the absorption edges of
the continuous opacity sources. A Gauss-Lobatto quadrature using
4, 6, or 10 wavelength points was performed for each band. The
sum of the contributions of these bands represents the total flux

of the model

%0 134 4
F = _{'Fldk = iEIFA iwi = 0 Teff/“ (IV-1)
Equation (IV~1l) was used to define the effective temperature of the

model, T at each phase.

eff’
The total flux was defined as the integral of Fh not Ev since
A = 5) / max Fy ~ 1077 while K, (A = 5) / max E, ~ 101,
Since there is essentially no flux shortward of 912} for stars in
this temperature range, the integration can be computed with fewer
quadrature points if Fi is used. Computing .)rqide with these
quadrature points resulted in an error of 0.3%. Before these fluxes
can be used to qompﬁte colors, the effect of the spectral lines must

be taken into account,

3. Line blocking approximation,

67 -

In the range of spectral types populated by Cepheids, the contribu-

tion of spectral lines to ;he total opacity is large in certain wave-
length regions. Because including the effect of lines in the mono-
chromatic opacity would require an excessive amount of computer time,
the line'blocking approximation was used. 1In this apptdximation, the
flux in each wavelength band is multiplied by a line Biocking factor,
0<T =<1, which fepreSEnts the fraction of the flux absorbed by the

lines in the band. The line blocked flux, F., is then defined by

BI
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F, = (1 -T) Fyy, (1v-2)

B
where Fy is tﬁe flux computed including only continuum opacity sources,
This approximétion does not conéerve energy since the flux removed
by the lines is simply ignored; but, since gray radiative transfer was
used to compute the hydrodynamic structure, it was felt that use of
the line blocking approximation‘was warranted,

Figure 1V-1 shows Tlvs.A for a model taken from Parsons (1969)
having Teff = 6Q00°K and log g(= 1.8. The line blocking factors are
those of Bell (1974). Figure Iv-2 iilustrates the difference between
FB and Fye The dashed line is the spectral energy distribution
computed using only continuous opacity sources; thé solid line in-
cludes the line blocking factors shown in Figure IV-1l. Note the
linear scale of the ordinate chosen to accentuate the difference
between.FB and FU. It is clear from Figure IV-2 that the line blocking
has a reaSOnébly large effect on the U, B, and V magnitudes but changes
the R and I magnitudes only slightly.

The line blocking factors are in the form of tables of T vs, A
for a set of Teff and Beff Before the line blocking factors can be
applied to the hydrodynamic models, '1'eff and Bopp TUSE be defined.

The method used is described in the following Sectiom.

4, Effective temperature and gravity.

The parameters of major importance in the hydrodynamic calculations
were the luminosity emerging from the model and the radius of the photo-
sphere. The line bloc’ing factors, though, are tabulated in terms of

Teff and Bogs The effective temperature of the model can be found by

. _ 2 4
solving L = 4R cTeff’

stellar atmosphere is hydrostatic equilibrium has a unique gravity,

but determining.geff is more complicated. A



69
g =CM / rz. The hydrodynamic models, on the other hand, are

experiencing accelerations and each zone has an effective gravity
given by

g

off © T dp =- g%_ .+ r, | (Iv=3)
. .

dm

where ¥ is the acceleration of the zone. A suitable method for
finding the meén value of Boss in the line forming région of the
atmosphere was needed.

A stellar atmosphere is normally defined in terms of Teff and
Beogg® Teff is a measyre of the temperature of the model; Bogf? of

the pressure. For this reason, the mean effective gravity of the

atmosphere, Eéff,_was defined from equation (IV-3) as

-é- - ./0. |dm e-T/TO dr .
eff fwe--r/rro dt . (Iv-4)
b h

where To = 0.1. was chosen to.limit the average to the line forming

region, This value of of £

the line blocking factors at each phase.

" was used along with Te £ to determine

f

The variations of Te and Bosf with phase are shown in Figures IV-3

ff
and IV-4, respectively. The large spike in log Boff and the dip in
Teff near phase & = 0.15 may be artifacts of the artificial viscosity
(see Chapter III). The large increase in log Bopg DAL & = 0.5, on
the other hand, ig real and is caused by a shock moving out through
the atmosphere. If the featpré near ® = 0.15 on the log Bogg CUTVE is
ignored, the variation is found to be less than has been observed by
Schwartzchild, Schwartzchild, and Adams (1948), Schmidt (1971b), and

Parsons (1971 a,b). This difference is not significant since Beff of

RDT was found by averaging over the entire atmosphere while the observed
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dynamic gravities refer to a small part of the atmosphere. The 8ess

variation of a given zone is much larger but spurious accelerations
due to zoning effects are also enhanced.

Oke, Giver, and Searle (1962) in their analysis of the RR Lyra
star SU Draconis found a fange of phases héving roughly constant

T and Bafs® As shown in Figure IV-5, RDT behaves differently.

eff
Ignoring the effects of the atmospheric snock wave and the spike
caused by the artificial viscosity (by following the dashed lines in
Figure IV-5) givés an open'curve in the log Bogf " log Teff diagram.
During rising and falling light, the aﬁmnsphgre moves at nearly
constant Besg? i.,e., isobarically, while neér maximum and minimum
light, it changes isothermally. If it is assumed that the pressure

at some point in the atmosphere is proportional to Befs? and that the
perfact gas law with Toee and this pressure can be used to find the
specific volume, V, 2 P ~ V diagram can be constructed (Figure IV-6).
The dashed lines in Figure 1V-5 have been followed in cénstructing
this diagram, Following the actual gravity variation instead results
in the addition of two long, narrow loops containing little enclosed
area. Since these loops needlessly clutter the diagram and contribute
little to the discussion; they are not shown. The area enclosed by
this curve indicates that the atmosphere has a destablizing effect on
the model. Although this curve is not a proper.thermodynamic integral
since it does not folibw a given méss element, Christy (1962}, who
con§tructed.a gimilar diagram from observations of SU Dra, concludes
that this P - V diagram reflects the influence of the HIR on the star.

5. Defining the color system.

Once Té and Besf have been found for each model, the line

fi

blocking factors can be applied to the spectral energy distributions



computed above, and the broad band UBVRI colors can then be calculated.
The relative filter sensitivity functions for the U, B, and V filters
were taken from Azusienis and Straizys (1969) and those of R and I from
Johnson (1%64). These magnitudes were on an arbitrary scale. In order
to make comparisons with observations, Vv, U-B, B-V, V-R, and R-I were

converted to Johnson's system using least squares fits to

C; = a + b, : (IV-5)
where

Cy = color in Johnson' system,

¢ = color in arbitrary system.

Line blocked spectral energy distributions of Parsons’ (1969) models
were used for the calibration, Unfortunately, there was no single
source available that gives the Johnson colors needed for the trans-
formations (IV-5). The (U-B)J and (B-V)J colors were taken from Bell
and Parsons (L974}; (R-I)J was taken from Schmidt (1973); (V-R)J was
computed from the calibration by Caputo and Natta (1973). The absolute
visual magnitudes, V, were computed from the bolometric magnitude using
the bolometric correction of Kraft (1961). All colors given in the
following are on Johnson's system.

The absolutervisual magnitude light curve, MV vs. ¥ is shown in
Figure 1V-7. Although the zoning effects are smaller than OTOS, it
was found that they masked features of interest on the HR and color-
color diagrams, The light curves were, therefore, smoothed to minim-
jze these zoning effecis. These smoothed light curves shown in Figure
IV-8 were usgd for the comparison with observations discussed in the

next section.



B. Comparison with observations.

1. Light curve parameters.

The light curves computed in the previous Section were compared
with observations. Since the model was not selected to represent a
specific star, the theoretical results were compared with the mean
properties of Cepheids with periods near 12d. In Figure IV-8, the
increase of light amplitude with decreasing effective wavelength is
readily apparent. Somewhat less apparent, but still discernable,
is the phase shift noted by Stebbins, Kron, and Smith (1952) and
Wisniewski and Johnson (1968). This phase shift is in the sense that
long wavelength light curves lag short wavelength light curves. The
phase éhift between the U and I curves of RDT is abouf 0.04 period in
good agreement with observations. 7Table IV-1 compares the light ampli-~
tude of RDT with observed values from Wisniewski and Johnson (1968).
Unfortunately, the only Cepheid they observed with a period near 12d
is [ Gem, a star with a low-amplitude, symmetric light curve. The
table shows that the RDT amplitudes fall within the observed ranges.

RDT can also be compared with the light curve parameters published
by Schaltenbrand and Tammann (1971). Table IV-2 compares RDT with all
classical Cepheids in the period range 11d to 13d that they observed.
Again the values for RDT fall within the range of observed quantities.
Figure 1V-9 and Table IV-3 give the adopted light and color curves
for RDT.

2. tColor-temperature relations.

A further check on the medels can be made. By treating each of

the 200 models as an independent observation, the color-temperature
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laws can be computed. Figure IV-10 shows the dependence of (U-B),
(B-V), (V-R), and (R-I) on log Toege The depeﬁdence of (U-B) on
Boff produces the open curve in the (U-B)-log‘Teff plane. The
(B-¥), (V-R), and (R~-I) curves, on the other hand, closely approxi-
mite straight lines and should, therefore, be good temperature
1ndicators.. The fits to the relatiomships

log Teff = a + b(X-Y),
and O = ¢ dX-Y),
where (X-Y) represents the color, are given in Table IV-3, as are
the relationships derived by Schmidt (1971a). For comparison,

Kraft (1961) gives log T .. = 3.886 - 0.175 (B-V) and Rodgers (1970)

ff

gives § .. = 0.64 + 0.337 (B-V).

£
This agreement with the observed values is much better than

expected and results from partial cancellation of two errors.

Ignoring convection produces a model having too large a temperature

gradient in the photosphere. Using the line blocking approximation,

which neglects the backwarming effect of the line opacity, produces

a model having too small & temperature gradient. Ignoring both

effects results in a temperature structure closely approximating that

of the stars studied. Since the observed color-temperature laws were

derived using nonpulsating super-giants and hydrostatic model atmospheres,

the accuracy of the qolor temperature fits indicates that deviations

from radiative equilibrium must be small, as predicted by Whitney

(1967). The use of static model atmospheres to study the colors of

Cepheids should, therefore, produce reliable results.



G, Loops in the (U-B)-(B-V) diagram.

Having established that the colors of RDT reproduce the observed

colors allows the models to be used to answer questions requiring a

theoretical approach. One of these questions has already been

answered. The hydrodynamic atmospheres are nearly in radiative

equilibrium a2t most phases and can be approximated by a series of

hydrostatic model atmospheres.

Another interesting question is the cause of the loops in the

{0-B) - (B-V) diagram. Abt {1959) has suggested that the loops are

caused by

a)
b)

£)

excess ultraviolet emission from shocks,
sensitivity of the continuous opacity, KC’
to the electron pressure, Pe’

unusual line blanketing,

lines being partially filled in by .emission lines,

continuous emission possibly originating in & chromosphere, or

non-thermal dependence of line strength (i.e., with Pe).

Figure IV-lla shows the color-color diagram for RDT. The curve

resembles that of 7 Aql and would be classified by Nikolov and

Kunchev (1969) as being linear or nearly linear. .The curve is notice-

ably open from phase & = 0.1 to ? = 0.5 having a maximum width of A

in (U-B). Since neither emission lines nor chromospheric emission was

included in the model, the loops could not be produced by (d)} or (e).

Figure IV-11b shows the color-color diagram for RDT excluding the line

blocking factors. Due to the change of scale the curve appears to be

much more open but still has 2 maximum width of 0%05 in (U-B). Since

lines have not been included in calculating this case, the openmess
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cannot be explained by (c) or (£). There is a strong shock in the

atmosphere only near ¢ = 0?5 and the excess emission amounts to about
0?02 in (U-B). Possibility (a), therefore, can be excluded. Only (b),

the sensitivity of K _ to Pesremains. In the temperature range of RIT,

C

the continuous opacities of H and H are the primary opacity sources.
In the atmosphe:;, most of the freé electrons come from the metals,
ad the ionization of the metals depends linearly on_Pe through the
BSaha equaticn. Since the wavelength dependences of the H and H
continuous opacities differ, a change of Pe at fixed temperature will
change H /H and, therefore, the wavelength dependence of KC' Since

the U filter contains the Balmer jump, this effect will be more pro-

nounced in U than in B or V, producing a loop in the color-color diagram.

D. Mean colors of Cepheids,

Figure IV-12 indicates another problem. The model traces an
open path in the HR Diagram running nearly parallel to the lines of
constant period and covering the entire width of the instability strip.
Many attempts at defining period-luminosity or period-luminesity-color
relations depend on the mean values of the luminosity and colors.
There are at least 3 distinct methods for computing these means,

a) the intensity mean of the color-(B-V)I,

b) the magnitude mean of the color-(B-VﬁM,

¢) the difference of the intensity méans of two

magnitudes-(B)I - (V)I,

Unfortunately, these method do not give the same results. Table

IV-4 compares these means with the colors of STB. Method (c) is

normally considered to be the most physically meaningful average
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gsince conservation of energy in a steady state system requires

p
f Lit = Loy,

0
where L is the bolometric luminosity and P the period. There is

{1y =

=

nothing to require this relationship to hold in a limited wavelength
region, however, since the wavelength dependence of the luminosity
varies during the cycle. Table IV-4 indicates, however, that method
{c) does best reproduce the values for STB confirming the results of
Cox and Wing (1973). The discrepancy between the mean values of
(U-B) from methods (2) and (b) and that of STB is difficult to
explain, but there appear to be two possibilities. First, since the
U filter contains the Balmer jump, it is sensitive to the confluence
- of the hydrogen lines near 3650} and, therefore, to Boff Second,
the U filter contains the wavelengths with both the largest and the
smallest opacities. The U magnitude, therefore, is affected by a
larger region of the atmosphere than the other filters. Deviations
from radiative equilibrium will affect the U magnitude for a larger
fraction of the cycle than it will the other magnitudes. In either case,
the larger amplitude in U will accentuate the differences among the

averaging schemes.

E. Zero point of the P-L relation,

One further point of interest is the location of STB in the HR
" Diagram. The + in Figure IV-12 marks the location of STB and the
dashed lines show the Sandage and Tammann (1969) instability strip
and two lines of constant period. The location of STB indicates
that the zero point of the Sandage and Tammann P~L-C relation should

be lowered by 072, Tben and Tuggle (1971b) suggest that this large a
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change is reasonable considering the uncertainties in defining the

zero point. Unfortunately, they suggest an upward revision teo remove
the discrepancy between the pulsational and evolutionary masses., On

the other hand, recent studies of the zero point using secular paral-
laxes indicate the adopted zero point might be too high. Jung (1970)
finds that the shift should be AM = 0% + 0%4 while Wielen (1974)

gives AM = 072 + 04, Wielen peints out that the increase in the zero
point required by Iben and Tuggle cannot be ruled cut and is just barely
tolerable.

Due to the approximations made in computing the models, the results
presented in this chapter must be considered tentative. More accurate
models are needed to verify the correctness of these conclusions. The
inaccuracies of the models are even more important when the line pro-

files are considered in the next chapter.



STAR

X CYG
RDT
U AQL

STAR

ATR
CMA
CAR
CAS
CEN
CEN
CRU
CYG
GEM
MUS
NOR
NOR
PER
s8¢
5CT
VEL

16.4
12.1
7.0

computed light curve parameters

av

.692
.992
.835
.969
.886
.979
.678
.778
.672
1.031
.967
.890
.787
1.001
.881
.570

.99

Table TV-1

Comparison of cbserved and

computed light amplitudes

AU AB

2.4 1.6

1.9 l.6

1.5 1.2
Table 1IV-2

Av

1.0
1.0
0.8

Comparison of observed and

A(B-V)

.356
-457
457
494
453
539
.663
.525
434
.582
472
.334
404
« 549
453
.342

.49

A(U-B)

461
485

.528
.508

.668
.533
457
.705
.553
.319
.293
.831
.678

«46

AR

0.60
0.55
0.52

A1

0.42
0.45
0.42

Ad

-+505

.553
642
.599
511
.528
.664
.519
.532
.636
541
646
.609
.596
.534
544

.57

78



ver

- LI T T T . ] . .

WOoOoo~N~O D PPLDLRNNE SO
nmoULowmwouUuowmwowunmolbLouLoLouUtho

»

[afoloNoRoNol=NelelNaeRaloRollaollalololeN

Table IV-3

Adopted light and color curves

MBOL Mv U-B B-V V-R R-1

-4,051 -3,922 0.648 0.807 0.674 0.461
~4.132 ~4,039 0.553 0.736 0.627 0.427
-4.275 ~4,223 0.445 0.628 0.555 0.380
-4 .347 -4,310 0,381 0.568 0.517 0.351
-4,510 -4,500 0.345 0.490 0.454 0.314
-4.537 -4.,525 0.351 0.506 0.463 0.313
-4,657 -4 ,647 0.327 0.439 0.426 0.298
-4,758 -4.758 0.338 0.423 0.402 0.289
-4.,720 -4.717 0.360 0.460 0.426 0.306
~4.612 -4,592 0.383 0,513 0.470 0.336
-4 . 457 ~4,403 0.434 0.611 0.544 0.372
-4.405 -4.337 0.467 0.642 0.565 0.390
~4.421 -4.354 0.483 0.649 0.567 0.393
-4,369 -4.290 0.543 0.704 0.597 0.411
-4.280 -4.174 0.607 0.763 0.641 0.436
-4.195 -4.062 0.678 0.833 0.681 0.457
-4.,102 -3.944 0.717 0.843 0.706 0.482
-4.,030 -3.854 0.754 0.871 0.725 0.497
-3.972 -3.782 0.781 0.914 0.746 0.503
-3.973 ~3.802 0.752 0.886 0.725 0.493



Table IV-4

Color-temperature relations

log T, = & + b(X-Y)
O ¢p = ¢+ dX-Y)
Present Present Schmidt (1971)
a b c d c d
B-V 3.877 -.174 642 .349 641 .309
V-R 3.906 _.252 |583 0505 05£1'3 0593
R-1 3.918 -.394 .561 .791 .574. 773
Table IV-5
Magnitude and intensity mean colors
U-B B-V V-R R-1I v
(x-y)l_ .507 .654 .571 .393
-1, .518 .665 .576 .396 -4.261
(x)I-mI .451 614 .552 .386 -4.302
STB 433 634 .575 .386 -4,273
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Figure 1V-2.
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Spectral energy distribution for a model with Teff
and log g = 1.8. --- no line blocking;
—— with line blocking. Note linear scale of ordinate.

= 6000°K



2.5

] |

T oyt =6000° K
LOG g= 18

—

0.0
3000

3600

4200

4800

5400
A (A)

6000 6600 7200

£g



LOG 8 ei

201 T
18-
161
14
12}
1'%.0 0.11

Figure IV-3.

log Bagf VE* phase.
dashed line,

See text for explanation of

Y8



Tert (°K)

6400

6200

6000

5800

5600

5400

5200

5000

4800

0.00

1.00

| 1 ] i
0.20 040 0.60 0.80
PHASE
Figure IV=-4. log Teff vs. phase. Note decrease in Teff at same phase

as increase in g

eff

near ¢ = 0.15

S8



] T [ I
16
14
o
«T1]
D
o
—_
1.2
10 1 | ' 1 |
3.70 3.72 3.74 3.76 378 380
LOG T <
Figure IV-5." log Bogr VS* log Teffﬂ Dasned lines show the curve

following dashed line in Figure IV-3,



Figure IV-6.

P~V diagram constructed using T The dashed

a .
eff 2™ Bogr
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Figure IV-7. Absolute visual magnitude,'Nv vs, ®
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CHAPTER V

LINE SPECTRUM

A, Method.

1. Basic approach.

In the preceding chapter it was shown that the broad band colors
computed from the hydrodynamic model atmospheres agree with obserﬁa—
tions of Cepheids., Ideally, one would dlso like to show that the
models reproduce the observed line spectrum. There are several
reasons why a detailed comparison was not made. The primary reason
is the large amount of computer time required to perform a synthetic
spectrum analysis., In addition, the models do not include line
blanketing, non-LTE effects, or non-gray radiative transfer, effects
that are expected to be more important in the line-forming region
than in the photosphere (Bohm-Vitense 1972; Osmer 1972). Since the
number of variables that must be changed to investigate the range
of observed phenomena is large, a somewhat heﬁristic approach was
adopted. A single line, the A4494.57h line of Fel (excitation potential.
2,2eV), was chosen to give a reasonable variation of the number of
.absorbers with depth in the atmosphere. The equivalent oscillator
strength, £, was treated as a free parameter, By varying f it was
possible to study the effect of the moving atmosphere on lines of
different strengths,

2, Computaticnal procedure¥

The method for computing line profiles in a moving atmosphere

follows a sugpgestion made by Chandrasekhar (1945). The line

*
The material in this section is from Karp (1973).
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absorption is described by a Voigt profile, H(a,u), where & is the
damping parameter and u = (l-lo)/AlD, When there are velocities in
the atmosphere, u must be modified to account for the motions of the

gas. This can be done by letting
u' = u + uvl/cﬁhn

where pv is the local velocity of the gas projected onte the line
of sight, and using H{a,u’) to compute the line opacity. The

specific intensity can be computed from

1,0 = [ R, (6 )expl-t, /) dty s
0
and then the flux from

1
R, (0) = Zj' I, (0, Wik
| 0 .
Other methods commonly used, such as the Feautrier method or the

quadrature integration of Milne's second equation (Kourganmoff 1952),

cannot be used since the opacity is a functiom of u.

B. Microturbulence.

1. Velocity gradient mechanism*

Before considering the detailed line shapes, the equivalent widths
of the lines, W, were used to investigate microturbulence in Cepheids.
Struve (19325 introduced microturbulence to explain the anomalously
iarge Doppler broadening velocities he found in sypergiants. This
was explained by Struve and Elvey (1934) as being due to either "a
turbulence of small eddies™ or to "several shells which expand with
different velocities.” The concept of microturbulence as a turbulence
of small eddies has been attacked by Wofrall and Wilson (1972). They

claim that the concept of microturbulence is valid only in terms of

* .
The material in this section has been adapted from Karp (1973).
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the reversing layer treatment of line formation and attribute the

large Doppler broadening velqcities to inadequacies in the theory

of line formatiom, particularly the LTE stumption. It has also been
suggested by Evans and Schroeder (1972) and Andersen (1973) that
systematic errors in the measured equivalent oscillator strengths

are responsible for microturbulence. Since neither of the above
suggestions has yet been shown to be responsible for the observed
microturbulence, there is still a great deal of interest in small
scale turbulence. Hearn (1974) has recently shown that the flux

of energy required to maintein microturbulence is at least 100 times
grester than the acoustic flux gererated by convection in the sun.

in supergiants the problem is not as bad but the acoustic energy 1is
still a factor of 10 too small to maintain the observed microturbulence
even though the acoustic flux is much higher (de ioore 1970).

It has been found that miéroturbulence varies with height in the
atmosphere of supefgiants (Wright 1946; Huang and Struve 1960) and
with phase in Ceﬁheids (vaﬁ Paradijs 1972), bifferential motions-have
been reported in the atmospheres of supergiants of many spectral types
(Abt 1957; Rosendahl and Wegner 1970; Aydin 197i) and, in particular,
in Cepheids (van Hoof and Deurinck 1952; Sanford 1955} Dawe 1969).
Van Paradijs has noted that the microturbulence in Cepheids is a
maximum near the phase of most rapid contraction. Dawe (1969) and van
Hoof and Deurinck (1952) have shown that the veloeity gradient is-ﬁi
appreciable at this phase, Sanford (1956) has shown that line widths
increase just before maximum light in T Mon and SV Vul, a phése at
which he observes a large velocity difference between weak‘and strong

lines, The effect of a velocity gradiemt on the curve of growth has
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been investigated by Abhyankar (1964 a,b), Kubiowski and Ciurla (1965},
Ciurla (1966) and Arakelyan (1969). Although they showed that a
velocity gradieut raises the'flat.part of the curve of growth mimicing
microturbulence, no attempt was made to compare computed and observed
velocity differences. Before investigating the velocity gradient
mechanism using the hydro&ynamic models, a preliminary study was made.

2. Test of the velocity gradient mechanism,

To make the test case as realistic as possible, a model atmo-
sphere with Tess = 6300°K énd log g=1.8 from Parsons (1969) and the
Fel line discussed above were used. A wide range of effecés was
‘studied by computing curves of growth for log a = -1, -2, -3 and for
microturbulent velocities §=0 and 5 km St?.c:"1 by varying the number of
absorbérs in the line of sight., These curves are shown in Figures V-1
to V~3. The curves for £=0 and-§=5 km secul do not come together at
large ﬂ/ﬂo because thg ordinate is ~log W/\ instead of -log W/AlD.
Underhill (1947) has shown that a velocity of expansion (or contraction)
constant in T cénnot change the gquivalent width, W, of a line. Such
a velocity field wiil produce asyﬁmetric profiles, however, due to the
integration over the surface. As a check, several profiles were
. computed with v{(7) = 20 and 40 km s_l. In no case was the change in
W greater than 1 per cent. This change is due to errors in the angle
and frequency integration and can be used as a rough estimate of the
numerical errors in all these'calculations.

For these preliminary calculations, an arﬁitrary choice of v(T)
was made, v(T). = -~ a log T. This is convenient because it allows a

correlation of mean optical depth of formation of a line and its
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observed radial velocity and is nearly linear with geometric height
in the line forming region. An arbitrary constant may be added to

v(T) without changing W, but it will change the shape of the profile.

The results for £=0 and 5 km s°1 and a=5 and 10 km - are

shown in Figures V-1 to V-3. With o = 10 km s-l, the curve of growth

(Qxlﬁ) is néarly identical to the normal curve of growth with £=5 km s-l

§5) until the damping portion.is reached. In all cases 9;10 has a

wider plateau than CES' An observer would interpret this as being

(c

dué to & lower value of the damping parameter, a. The decrease in a
at phases when € is large has been observed by Rodgers and Bell (1964,
1968). This change is a is easily understood. ' The vertical shift
‘between the damping parts of C§0 and C§S is proportional to the ratio
of the ﬁ0pp1er widths, Since qls and qmlO have the same Doppler width
~as CEO’ the three curves must join in the strong line asymptotic limit.

to be below Cgs as the lines

The only way this can happen is for leo

get strdng.

Dawe (1969) has plotted observed velocity versus mean optical
depth of formation for weak lines in £ Car. Reading from Dawe's
.Figure 3, the weakest lines which are formed near T = 0.3 have a

velocity of about 18 km s ! while those formed near T = 0.1 have a

velocity of 22 km s-l. Rodgers and Bell (1968) have observed £ Car

and find that £ = 7.5 km s"1 at this phase. Tf the above results can

be extended to this éase, g = 15 km s-l should be used to correspond

to the observed microturbulence which gives v(0.1) - v(0.3) = 7.2 km s-l;

" Correcting for the integration over the surface by the factor p = vpulsf

v = 1.375 (Parsons 1971) gives a predicted velocity difference of

rad

5.2 km 71 which, considering the uncertainties involved, is in excellent
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agreement with the 4 km 8—1 velocity difference. observed by Dawe.

The radial velocities observed from the minima of the computed
profiles are given in Table V-1. An exact comparison is not meaningful
since the observed velocities and shapes of the lines are more sensitive
to the velocity distribution than is the shape of the curve of growth.

3. Microturbulence in the hydrodynamic models.

The hydrodynamic Cepheid atmospheres make it possible to study
the velocity gradient mechanism gsing more realistic velocities thanm
used in the preceding section. The microturbulence was determined
for each of 20 models at equal phase intervals, A®? = 0.05, by perform~
ing a differential curve of growth analysis relative to STB. Figure V-4
shows the curves of growth for STB computed by varying log gf for the
selected Fel line. After computing similar curves for the 20 hydro-
dynamic models, the curves were shifted horizontally until their linear

parts coincided. The remaining vertical shiit is
2 2
vy T g

{DEV] = log s
VsTs

where DRV stands for the Doppler broadening velocity, vg and Vorp

are kinetic velocities of Fe atoms in the hydrodynamic and stable
models, respectively, and £ is the unknown microturbulent velocity.

1f it is assumed that the kinetic temperatures of the two models are

in the ratio of their effective temperatures, g/vSTB can be found.

The kinetic velociﬁy in STB was found from’[DBV] measured in Figure V-4.
In Table V-2, which s;;marizes the résults, Alog W = DBV , Ry is

the ratio of the Doppler broadening velocities, VQIVSTB is the ratio

of the k ie velocities, and § is the microturbulent velocity, and
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AV is discussed below, All velocities are in km sal.

It is clear that the velocity gradients are not responsible
for all the microturbulence observed in Cepheids. Typical micro-
turbulent velocities in Cepheids are 5 to 10 km s-l (Rodgers and
Bell 1964, 1968; Schmidt 1971b; van Paradijs 1972). The latter
value is supersonic, They also find that € varies with phase with

an amplitude of 2 to 5 km s L.

The microturbulence in RDT only has
an amplitude of 1 km s-l. Thus, the velocity gradient mechanism
cannot explain the variable microturbulence unless more accurate
models show that the effect has been underestimated here. However,
since § rarely exceeds the sound speed by more than 1 or 2 kn s_1
in Ceﬁheids, the veloecity gradient may be responsible f;} the super-
sonic part of the microturbulence.

Since it appears that two phenomena contribute to the observed
microturbulence, an attempt was made to see how the classical micro-

turbulence, § and the microturbulence caused by the velocity

cl?

gradients, ggr’ combine to produce the total observed microturbulence,

§t. A test case was computed using the model at ® = 0 including

gcl = 2 km s-l in addition te §gr = 1.4 km s“l. It was found that
§t = 3,1 km sﬂl indicating the Doppler broadening velocity is consistent
with
T : 2
DEV = fom—— 4 + .
o (Ecl Egr)

gince the totazl microturbulence 1s not the square root of the sum of
the squares but is more likely Et = gcl + ggr’ even a relatively small

ggr can make §t appear to be supersonic.,



Schmidt (1974) has attempted io correlate the observed micro-
turbulence with the observed velocity difference between weak and
'strong lines and concludes that there is no apparent correlation.
Even when the velocity distribution in the atmosphere is known,
as it is in the models, specifying the correct velocity difference,
A Vv, for such a correlation is difficult. Since the velocity
gradient is not montonie, it is not clear how an average A V charac-
teristic of the atmosphere can be found. F¥Figure v-5 shows § versus
A V where A V was defined as the maximum minus the minimum velocity
on ‘the interval 0.01 < 7 < 1. The correlation is weak and there is
a good deai of scatter, making it unlikely that the correlation

@

could be found observationally. The line shown, a least squares fit

to the data,is given by
E = 0.79 + 0.21 Av,

The line does.not pass through the origin due to the problem defining
A V mentioned above.

From this analysis, it appears that microturbulence in Cepheids
is still a mystery. The velocity gradient mechanism is not significant
in producing the observed microturbulence and may not be large enough
to explain the observed variation of the microturbulenceAwith phase.

Further work is needed.

C. Line profiles.

1. Asyumetries.

Having computed hygdrodynamic model atmospheres makes it possible
to compare theoretical and observed line shapes, There are two

mechanisms which contribute to the asymmetry of the line profiles.
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One of these is a geometric distortion first studied by Chandrasekhar

(1945). The observed fiux profile is a weighted sum of intensity pro-
files ffom different parts of the stellar disk. As illustrated in
Figure V-6, each intensity profile is Doppler-shifted by an amount,
uvp, where i = cos 9 and vp = pulsation velocity of the atmosphere.
One such set of intensity profiles is shown in Figure V-7 and illus-
trates an important computational point. Enough angle points must
be included in the gngle quadrature to insure sufficient overlap of
the intensity profiles, 1f too few points are used, spurious bumps
appear on the flux profile. Exbressing the total widthAof the in-
tensity profile in velocity units, Vo gives a condition on the maxi-
mum angle separation, Ap = vnlv. Sharper lines and higher velocities
fquire more angle points,

Even a constant velocity in the atmosphere will produce asymmetric
line profiles; According to van Hoof and Deurinck (1952) a line will

appear symmetric unless

o |
o’ 5 2.5 (AN,

[

where 10 is the rest wavelength of the line; v, the velocity in the
atmosphere; and (AR)N, the half width of the undisturbed line. Thus,
weak lines will appear more asymmetric than strong lines, Figure V-8
illustrates this point. The weak line, (a), is very asymmetvic while
the strong line, (b), appears undistorted even though both lines were
computed with a constant atmospheric velocity of 20 km S-l. The

dashed line in (@) is the bisector of the weak line and is characteris-

tic of lines distorted by this geometric effect.
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The second mechanism distorting the line profile is most noticeable
in strong lines. Bell and Rodgers(1964) and Kraft (1967) have suggested
that the asymmetry of these strong lines is due to velocity gradients
in the atmosphere, i.e., different parts of the line are formed in
layers of gas moving with different velocities. Figure V-9 illustrates
the velocity gradient asymmetry. Not only is this line too strong to
show a noticeable geometric distortion, but its bisector has a shape
very different from that in Figure V-8(a). The profile in Figure V-9
can be compared to the 4508} line of FeIi in B Dor observed by Bell
and Rodgers (1964).

The geometric distortion is expected to be most important at
phases of maximum velocity while the distortion of stromg lines should
be greatest at phases of maximum velocity gradient. In view of the
difficulty of determining the velocity gradient from the velocity
- difference between weak and strong lines, it appears the asymmetry of
strong lines is a better indicator of the velocity gradient in the

atmosphere.

2. Cheshire cat lines.

Another interesting phenomenon is the occurrence of ''Cheshire
-Cat" (Carroll 1863) limes. This phrase was used by Underhill (see
Kraft 1967, pg. 240) to describe the extra component of strong lines
often observed in Cepheids. These extra components seem to have no
entecedents, but suddenlyﬁappear at phases when strong shocks are
expected in the atmosphere.

Grenfell and Wallerstein (1969) have attempted to explain the
splitting of the qm line in 8V Vul in the following way. The red

component of Ha is due to gas falling inward atr 70 km snl, which
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appears to move a distance of half a stellar radius. The violet com-
ponent, which has a velocity 40 km s-l more negative than the metal
lines, is associated with the pulsation of the atmosphere. When
these two layers of gas collide, emission lines of H and He should

be observed but are not., Wallerstein (1972) suggests that the inward
moving material originates in a circumstellér_shell. Skalafuris
(1974) suggests a different mechanism based on the work of Whitney
(1956), but also asserts that the splitting is due to velocity differ-
ences,

Kraft (1967) has stated that the velocity difference betweep ;he
two components may be as large as 30 to 40 km sil for the low exci-
tation metal lines while Grenfell and Wallerstein (1969) and Wallerstein
{1972) report velocity differences of up to 100 km 5-1 in the ﬁm lines
of SV Vul and T Mon. Since the atmosphere of RDT never has velocities
greater than 30 km s"1 or velocity differences greater than 15 lm 5-1,
the occurrence of the "Cheshire Cat" line shown in Figure V-10 indi-
cates a different origin for the secondary component. The deeper com-
ponent has a velocity of 19 km st while the shallower has -3 km s-l,
a difference of 22 km s L. Examining the model shows the maximum
velocity difference is 3 km 3-1 and the mean velocity is 10 km 5-1,

The sPiitting of the line is obviouély not caused by differential motions.

Further inspection of the model revealed that there‘was a tempera-
ture inversion of about 300°K near T = 3 x 10-3, the region in which
the line core is formed. To‘verify that the temperature inversion is

responsible for the line doubling, ttie same line was computed with all

velocities set to zero. The result is shown in Figure V-1l1. The central
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reversal is characteristic of a line core formed in a region in which
the source function increases outward. While a more detailed, non-LTE
celculation would probably not show as large & central reversal since
the source function in the line core could be smaller than the Planck
function, the line doubling could still occur for the strongest lines,
In fact, Thomas suggested that a temperature inversion was responsible
for the "Cheshire Cat" lines (see Kraft 1967, pg. 239). The asymmetry
of the line core can be caused by purely geometric effects as illus-
tfated in Figure V-12. ‘This profile was computed with a constant
velocity of expansion of iO km s'l. This profile is nearly identical
to that in Figure V-10 except for the direction of the aSymmetrf caused
by the different signs of the velocities used in the two cases.

It is now possible to explain why tﬁe "chéshire cat” lines in qm
and Call K are displaced more from the primary component than those
of the metal lines. Since the temperature inversions in RDT occur
only above T = 0.01, only the ﬁart of the line formed above this point
in the atﬁosphere can show the central reversal. A large part of qﬂ
is formed in this region, and, therefore, the velocity difference
between the two compoﬁents will be greater than that of the metal lines.

Although the models are inadeﬁuate for computing profiles of
strong .lines, %; profiles were computed for a qualitative comparison
with observations. No attempt was made to accurately reproduce the
observed line shapes.f In fact, the Ha lines shown in Figure V-13
were calculated using a Voigt profile instead of the more accuraté
Stark broadening. The lines have flat bottoms because the models do
not extend to small enough optical depths and because of the LIE

source function used. Qualitatively, though, the agreement with the
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ﬁl profiles published by Grenfell and Wallerstein (1969), Wallerstein

(1972), Rodgers and Bell (1968), and Schmidt (197Q) is excellent.
While some of the irfegularitiés in the profiles are associated with
temperature fluctuations caused by zoning effécts, several of the
profiles indicate the presence of temperature inversions. In
particular, the_profiie at §.= 0.55 shows the effect of the shock
wave that produces the second bump on the light and velocity curves.
One of the problems associated with "Cheshire Cat" lines is the
tﬂfeshpld effect (Skalafuris 1974). In Cépheids the line splitting
occurs only for the strongest lines, while in W Vir and RR Lyr stars
the line doubling often occurs in weaker lines. If the splittihg is
.cﬁuSed by temperature inversions, two phenomens contribute to the
threshold effect., First, as a pressure ﬁave moves outward, it
encounters & decreasing den51£y. Conservation of mass requires that
the wave must accelerate. Thus, the strongest shocks occur highest
in the a;mosphefe. The energy dissipation at the shock front produces
a8 temperature riée. Second, as shown in Chapter IT, thé time it takes
an element of gas to return to radiative equilibrium following a per-
turbation increases as the optical depth decreases. In the region
where the weak lines are formed, fhe'gas requires only a few seconds
.to return to eqﬁilibrium, while higher in the atmosphere where the
cores‘of ﬁhE‘stroﬁg lines are formed, the time it takes the gas to
return to equilibriuﬁ can be several thousand seconds(Whitney‘1967).
- In-this time the shock will have travelled about half:a pressure scale
height and crossed sevéral zones in the model producing a reasonably

thick layer with an elevated temperature. The splitting of weak lines



in population II variables is, then, indicative of shocks in their
photospheres.

Tﬁ@ temporature structure of the shock front will be modified
by the use of an artificial viscosity pressure, though, Instead of
having 2 temperature discontinuity at the shock front, the temperature
rise will be spread out over 3 or 4 zones. However, ignoring the
effects of radiation from the heated gas at the shock front, the
total temperature rise across the shock should be the same whether
or not artificial viscosity is used (Richtmeyer and Morton 1967).
1f radiation effects are included, the error in the temperature rise
depends on the ratio of two characteristic times. If the time it takes
the gas to return to thermal equilibrium, tos ig shorter than the time
it_takes the shock to move a distance equal to its thickness, to then
using artificial viscosity will lead to an underestimate of the tem-
perature rise. If, on the other hand, tR.> tgs the temperature rise
across the shock front will be independent of the artificial viscosity.
In the region of interest in RDT thv 5000 sec, and the thickness of
the shock is 3 or 4 zomes, AX = 5 x 109 cm, If the shock moves &t
roughly the saunq speed of 10 km s-l, then tR=3 t,- The temperature
inversions in RDT are, therefore, underestimates., This error is
unimportant, though, since the assumptions made in computing the
atmospheric structure are not completely valid in the region where the
shocks occur.

Care must be tak;n when measuring velocities of strong lines.
The practice of treating each component of the line as a distinct
layer of gas produces erroneous velocity curves, Neither component

represents the motion of the atmosphere, Even if the splitting is
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uot observéd‘pnd the line core appears:to be symmetric, there may be
incipient splitting that has been masked by macroturbulence, micro-
turbulence, or instrumental broadening} Velocities of strong lines
should, therefore, be measured at some point in the wings of the
line. This point will be discussed further in the next section in

which the velocity curves are discussed.

D, Velocity curves.

1. Ratio of pulsational to radial wvelocity.

In order to interpret radial velocities obtained from measure-
meats of spectral lines, the center to limb varjations of the
specific intensity wmust be taken into account., In effect, the
cénter to limb variations reduce to a determination of p, the ratio
of the pulsation velocity of the atmosphere, vp, to the measured
radial velocity of the liﬁe, Vs The value of p differs from 1
hecausé the observed flux profile is a weighted sum of intensity
profiles with different line of sight velocities. (See Figure V-6).

~ The early attempts at calculating p (Shapley and Nicholson

1919; Carroll 1928; Geﬁting 1935; van Hoof and Deurinck 1952) all
made the assumption, either implieitly or explicitly, that the
Doppler shift of the line was less tﬁan the line's Doppler width.
This assumption is not always valid.in Cepheids since the lines are
tybically 5 to 10 km gfl wide while the pulsation amplitude is of
the order of 20 to 30 kﬁ gL, In effect, the assumption reduces to
the statement that the minimum of the flux profile is simply the
weighted average of the minima of the intensity profiles fromu = 1

topu = 0. In the case shown in Figure V-7, it is clear that intensity
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profiles from y < 0.4 have little effect on the- location of the

£flux minimum. TIf the limb darkening law is given by

LG - (1-8) + Ba (v-1)
1(1)

this assumption leads to

p.6-28 (v-2)
4 - P
24 24
Since equation (V-2) gives ig-s p = i8 for ¢ < B<1, several

investigations ﬁave concluded that the calibration of p has only
a small effect on the computed ;elocities. Since the basic
assumption used to calculate equation (V-2) is not valid for
Cepheids, Parsons (1972) recalibrated p and showed that p is a
function of ¥, the ratio of the velocity of the atmoephere, vp, to
the observed width of the line including instrumental broadening v%.
Since RDT differs from the models used by Parsons, a similar calcula-
tion was performed,

Three models were selected for the study, STB, & = 0.2, and
$ = 0.7, corresponding to mean, ﬁinimum, and maximum radius,
respectively. fér each model, p was computed for a set of veloci-
ties and values of log gf. The effect of instrumental broadening
was included by convolving each profile with a Gaussian slit
function 0,048 wide, while rotation and macroturbulence were in-
cluded by convolving tge profiles with the rotation broadening
function given by Huang and Struve (1960) with v sin i = 10 km s-ll

Although Kraft (1966) has concluded that Cepheids probably do mnot

rotate, Abt (1958) hés shown that this rotation cannot be distinguished



- 112

from a macroturbulence of 7 km 5-1' a value characteristic of_Cepheiés.
The bisector of each profile was constructed and used to determine the
velocity at the minimum, half intensity, and 1/e points of the profile.
A total of 864 values of p was determined having an average of

p = 1,31 £ 0,03, The value of p was found to be insensitive to the
model, changing by only 0.02 between the models at minimum and maximum
radius. If only those casas.with line widths of 7 km s ' are consid-
ered, the average p = 1.30 £ 0.02. Since most Cepheids have line
widths of this order, a constant value, p = 1.30, was adopted. The
error in p introduces only a 2% error in the velocity.

Although a constant value of p was adopted, Figure V-14 shows
some interestiug correlations, The abscissae are ¥ = v/v% and the
ordinates p. In all four graphs, the dashed lines are given by
p = 1.37 - 0.03y taken from Parsons (1972), Figures (a) and (b)
show p(¥) for a weak and strong line, respectively, measﬁred at the
minimum of the profile while (e) and (d) represent the same lines
measured at the half intensity points. In both cases, the strong
line has alweaker dependence on ¥ than the weak line, In a&ddition,
ﬁhen the velocity is measured a2t the half intensity point, p is nearly
independent of y¥. The near constancy of p when the velocities are
measured at the half in;ensity point combined with the problem of
incipient splitting of the cores of the sfrong lines indicates that
the half intensity point should be used to determine velocities., 1In
particular, the practice of using the line eore when it is symmetric
and the wings when the core is distorted will produce spurious scatter

in the velocity curves.
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2. Comparison of hydrodynamic and line profile velocity curves.

1f the line core cannot be used to find the velocity of the upper
atﬁosphere, the problem of detecting velocity gradients becomes more
difficult. Figure V-15 shows how a velocity characteristic of the
line core can be found. The dashed lines are extensions of the wings
from points near the iine core. The velocity determined from the
point of intersection of the extrapolated wings agrees with the
velocity of the upper layers of‘the model with an accuracy of about
16%. In the example shown with p = 1.30, the predicted vélue is

14.5 ke s'l,.while the model gives 13 km s1

for the region in which
the line core is formed.

The easiest way to compare the velocities of the models with the
velocities determined from the profiles is to éompare velocity curves,
Figure V-16 shows the velocity curves for a weak, intermediate, and
strong line represented by a dashed, solid, and dot-dashed line,
respectively. To make the com@arison as representative as possible
these velocities were measured at the minimum of the unconvolved
profiles. The arrows indicate phases at which the strong line has a
split core. Only the deeper componént was measured leading to the
deviations from the other velocity curves. The open circles show
fhe velocity of qz determined by the extrapolation of the line wings
discussed above, A comparison with Figure IiI-? indicates that
measurements of the line profiles underestimate the velocity differ-
ences between the optically thin and optically thick layers, This
result is not surprising since the line prefiles represent averages

over 8 range of continuum optical depths. Note, however, that the

phase shift between H and the metal lines near $ = 0.5 is nearly the
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same as the phase shift between T = 10'-3 and T = 0.1 at the same
phase. In addition, the feature on the velocity curve near ¥ = 0.2
can be seen only for the strongest lines in agreement with Figure III-7.

3. Center of mass velocity.

One of the problems facing an observer studying Cepheids is the
determination of the center of mass velocity of the star, Vo This
value is needed both for kinematic studies (Kraft and Schmidt 1963;
Wielen 1974)rand for determining the radius of the star using the
Wesselink (1946) method. Oke, Giver, .and Searle (1962) have estimated
that an error of 1 km as‘1 in Yo results in an error of 107 in the.
derived radius. |

The center of mass velocity is normally defined by finding

vb such that

P
f {v-vy )dt=0 . (v-3)
0 . ‘
0
Due to changes in the opacity scale during the pulsation, the velocity

curves do not follow a given element of gas. There is no guarantee,
therefore, that & strict application of Equation (V~3) will give an
accurate value of Vor '
In order té check the importance of this effect, velocity curves
for a number of cases were constructed, and Equation (V~3) was used
to find Vor Table V-3 sﬁmmarizes the results. In this téble, MIN,
¥, 1/e fefer to the part of the profile used to find the velocity;
N, G, R, B refer to tke unconvelved profile, convolved with a
Gaussian slit 0,044 wide, convolved wiéh a rotation broadening

function corresponding to v sin i = 10 km s-l, and convolved with

both broadening functions, respectively. The weakest lines were



comblete1§ washed out by the rotation broadening function and these
casas are omitted from the table, The velocity curves determined
from the minima of the strong lines have also been omitted due to
splitting of the line core. It can be seen that .vo can be found to
an accuracy of better than + 0.4 km s_l by using Equation (V-3).
While this error will intréduce a 4% error in the radius determination,
it 1s rare that observations can be made to this accuracy.

Inspection of these velocity curves reveals only small differ-
ences among them. The adopted curve, Figure V-17, represents 3
typical velocity curve. The line used is moderately strong, varying
~ from an equi.valent width W = 88 m} to W = 153mA. A macroturbulence of
7 km s~ ! has been assumed and the resultant profile was convolved with
a Gaussian slit corresponding to 2 L/ m., In view of the discussion
earlier in this chapter, the velocity was measured at the half inienw
sity point on the profile. This velocity curve has been adopted as
representative of the observed velocity curves of the metal lines

and will be the only one used in the next chapter.
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Radial velocity in km s-l

Table V-1

observed

from computed profiles

116

log a -1 -1 -2 -2 -3 -3

alkn 5~ 1) 5 10 5 10 5 10
log ’ﬂmo

"1.000 2-9 5.4 3.3 5-“' 2.1 5.4
0.204 5.4 6.6 5.4 9.3 4.2 9.3

' 1.408 6.7 13.3 6.6 14.7 6.6 14.7
2.612 10.8 14.7 9.3 14.7 6.6 14.7




Table V-2

Microturbulent veiocities in

hydrodynamic model

v

? log W R, QIVSTB giVSTB g A v
.00 .12 1.32 0.97 0.88 1.39 3.6
<05 .10 1.26 0.99 Q.77 1.22 1.6
.10 .06 1.15 1.01 0.56 0.89 1.2
.15 .20 1.58 1.02 1.22 1.93 5.8
.20 .16 1.45 1.05 1,03 1.63 4.7
25 .08 1.20 1.05 0.62 0.98 0.8
30 .14 1.38 1.05 0.92 1.46 2.1
.35 <14 1.38 “1.06 . 0.92 1.46 2.0
40 »10 1.26 1.05 0.73 1.16 1.0
-5 .12 1.32 1.04 0.84 1.33 2.4
.50 .18 1.51 1.02 1.12 1.77 3.8
55 .08 1.20 1.01 0.66 1.04 1.6
.60 .20 1.58 1.01 1.22 1.93 3.7
.65 .08 1.20 0.99 0.67 1.06 1.6
i) .04 1.10 0.98 Q.48 0.76 0.7
075 .06 1.15 0.97 0.59 0.93 1.0
.80 .08 1.20 0.97 0.69 1.09 1.4
-85 .08 1.20 0.96 0.69 1.09 2.3
.90 .06 1.15 0.96 0.60 0.95 0.4
.95 .08 1.20 0.96 0.69 1.09 2.3

117



Error in center of mass velocity (km sec-l)

Table V-3

MIN ‘ ¥ 1/e \

log gf N 'C R B N C R B N. C R B
A 0:2 0.4 -—— — 0.4 0.4 ——— — 0.2 0,2 — ~——
-3 0.0 0.3 — — 0.4 0.3 — — 0.6 0.3 — —
-2 0.1 0.1 0.0 0.0 0.1 0.1 0.1 -0.2 0.1 0.0 0.0 0,0
-1 0.4 0.0 -0.2 -0.2 -0,2 -0.2 «0,2 -0,2 -0.3 -~0.2- -0.2 -~0.2
0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

1 0,1 0,1 0.1 0.1 0.1 0.0 0.0 0.0
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Figure V-1, Curves of growth for log a = -l. — . —— ——
- . ‘ - -1 .
£ = D(Cgo), - s £ =5 km s (Cgs)'
o o, & = 5 km s~1 (Cyg)i ® .,

o = 10 km s_l'(Calo). £ is the microturbulent

velocity and o is the velocity gradient parameter.
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Figure V-5. Microturbulent velocity, £, vs. a measure of the velocity
gradient, AV, The least squares line is shown. '
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Figure V-6, Schematic illustrating effect of angle integration on
a line profile in an expanding atmosphere.
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Figure V-14.

Ratio of pulsation to observed fadial velocity, p, vs.
ratio of pulsation velocity to half width of line, Y.
Dashed line is Parsons' (1972) relation,

a) Weak line measyred at minimum of profile

b) Strong line measured at minimum of profile
¢) Weak line measured at half intensity point
d) Strong line measured at half intemsity point

134



16

1.2

10

14k
I~

SET



10

0.8

©
o

RESIDUAL FLUX
o
N

0.2

00

136

l o

\
\
Y

g

4490

Figure v-15.

4494 4498

o
A(A)

Metliod for computing velocity characteristic of line corve

when core is split.
of dashed lines,

Velocity is measured {rom intersection




VELOCITY (KM S'1)

137

25
15
5
-5
15
.25 | i A | L
00 02 0.4 06 08 10
PHASE
Figure V-16. Velocity curves. — intermediate strength line, --- weak
‘line, strong line, o q} determined using method

described in text.



138

Figure V-17. Adopted velocity curve measured from line profiles -
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 CHAPTER VI

DETERMINATION OF CEPHEID RADIIL

A. Radiu= determination methods.

1. Bolometric radius,

There.are two ways to find the radius of a Cepheid'from
observed quantities. The first-method involves sclving

2 4

L = 4mROT, (VI-1)

£’
forlthe'radius; ‘The radius found in this way will be referred to
as the bolométric radius. The mean lumiuosi;y_of the star is

found from the period-luminosity law while, in the simplest éppli-
cation, the temperéture is calculated from the color. There are

obvious drawbacks; A change of the zero point of the period-

" luminosity law of 01 changes log R by 0.02, about 4%. In addition,
‘the solution is very sensitive to errors in Teff’ which, if broad

band colors are used to define T depends on the assumed reddening.

eff’
Whitney (1955) attempted to improve this approach by using model
atmospheres to determine the flux of the star and finding log R, /Rg

from )
' g i
F Qv
v,V

Mgy - M, = 2.5 log ]—-—-——- + 5 log (R,/Ry)  (VI-2)

i
E 5 dv
Vo V

where S: is the sensitivity function of the filter used to find M, .
oke (1961 s, b) made a further improvement by making absolute flux
measurements in 50 § bands. He then compared these fluxes to those

computed from model atmospheres to find Toege While both of these

. approaches remove some of the errors inherent in the color-Teff
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calibration, they require knowledge of the line-blpcking. An
error of only 50°K in T .. results in an 0.01 change in log R. 1In
addition to these systematic errors, the gravity variatioms, which
can be as large as a8 factor of 10 (Parsoné 1971 a, b; see also
Chapter IV) will produce an error that varies during the pulsation
cycle.

2. Baade and Wesselink radii,.

One way to find the radius that avoids these problems is the
Wesselink (1946) method. Based on an idea of Baade (1926), the
method uses both the light and Qelocity curves to find the radiﬁs.
Baade proposed using the change in brightness to give the ratio of

the radii from

- M

M 2

1 5 log RZIR1 + 10 log T2/T1 s (Vi-3)

and the velocity curve to give

. o t2 )
R2 - R1 = t- v dt.

Baade's method requires knowledge of the color temperature law. It
was not sﬁrprising when Bottlinger's (1928) attempt to find the
radius of { Gem failed since he assumed the star radiated like a
black body. Becker (1940) improved the situation by assuming only
that a single wvalued color-Teff law existed and obtained radii for a
number of Cepheids,

Wesselink (1946) removed the problem of the color-Teff law when
he suggested choosing two phases at which the star has the same
color. 1If it is assumed that equal color implies equal temperature,

the last term on the right of equation. (VI-3) vanishes, and there is
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no need to know even the form of the color-Teff relation.‘ The
Wesselink method also has the advantage that it ié independent of
both the zero point of the period-luminosity law and the interstellar
reddening.

There are two other assumptions inherent in the Wesselink method.
First, the mass depth of the line forming region is assumed constant
with phase so that the ﬁbservgd velocity curve follows a given element
of gas, Second, it is assumed that the ratio of the radii of the line
forming. and continuum forming regions is constant with phase. These
assumptions will be examined below.

There are, of course, problems with the method. Accurate velocity
curves are required and any change in p, the ratio of pulsational to -
observed radial velocity, produces a systematic error in the radius.
In addition, loops in the (U-B) - (B-V) diagram indicate that eQual
color does not necessarily imply equal temperature. It is also known
that the opacity scale changes during the cjcle so that different
elements of gas are observed at different phases, Velocity gradients
measured in Cepheid atmospheres by Sanford (1956) and Dawe (1969),
among others, indicate that the ratio of radii of the photosphere
and reversing layer changes during the pulsation cycle but the size
of this change is not known. Fernie and Hube (1967) have also shown
that small errors in reducing the light and velocity curves to the
~same epoch produce large errors in the derived radius, 1In spite of

these difficulties excellent results have been obtained.

B. Calculated radius of the hydrodynamic modei.

1. Wesselink radius.

Most papers reporting Cepheid observations include a section
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computing the radius by Wesselink's method. In accordance with this
tradition, the results of the previous chapters can be treated as
observations and the radius of RDT calculated using Wesselink's method.
The light and color curves of Chapter IV and the velocity curve of
Chapter V have been adopted as if they were observations of a star.

As pointed out previously, zoning effects limit the accuracy of the
light and color curves to about 0702 which translates into an 6%
random error in the radius, The integral of the adopted velocity

curve indicates an error of 0.2 km s_l

in the center of mass velocity
of the star. Combined with a random error of 27 from changes in p,
the minimum error expected is 10%, 8% random and 2% systematic. VSince
Fernie (1968) was dealing with less accurate velocity data than that
used here, his adopted error of 107 appears to be an underestimate.
Figure VI-1 shows the radius curve derived from the adopted
velocity curve (dashed line) and the radius of T = 1 taken directly
from the models (solid line). The amplitude of the radius curve
determined from the lines is about 7% larger than the variation of
the photospheric radius. This error will result in an overestimate
of the radius amplitude but should have only a small effect on the
computed value of the mean radius. It appears, therefore, that errors
introduced into the mean radius by changes of the opacity scale with
phase and by velocity gradients in the atmosphere are small.
Figure VI~2 shows the results of the Wesselink calculation
performed by taking pairs of points with equal (B-V), (V-R), and
(R-I). The solid line was taken directly from the models. The

error bar shows that the expected error of a single measurement is



144

‘comparable to the total radius variation. Therefore, all that can
be derived from these values is the mean radius. STB has a radius
of 71.7 Ry while the Wesselink calculations give 58.5 + 4.0, 73.5
8.7, and 67.3 £ 5.2 for (B-V), (V-ﬁ), and (R-I), respectively,

where the quoted errors are the staﬁdard deviations computed from
several radius determinations. The agreement is satisfactory except
for the (B-V) curve which is most semsitive to changes 1ﬁ Bosg® It
thus appears that the Wesselink method can be used to find the mean
radius of a Cepheid with an accuracy of about 107 only if very high
accuracy observations are available.

2. Baade radius.

At the time Wesselink published his modification of Baade's

method, the color-Te relation was not known accurately. Since

££

then the relation has been calibrated for several diffefént color

systems. In Chapter IV, it was shown that the color-Te relations

ff
derived for RDT agree with tﬁose derived from observations. Figure
VI-3 shows the values of R/Ro, where R, is‘tﬁe radius at & = 0,
derived using Baade's method, The notétion is the same as in Figure
VI-2. Using Baade's method introduces an additiomal error. A change
of 0702 in the color results in an error of 27 in the radius., Baade's

method does not depend on the zero point of the color-Te £ law or

b3
that of the reddening law. Only the slopes of these relations enter
the calculations.
The agrgement with the model is quite good except near ma#imum
light (3 = 0.35). The radii derived from (R-I) are more accurate
|
than those of (B-V) and (V-R), especially near minimum light. Com-
tined with Figure ﬁI-l, mean radii in solar units of 77.2 7.8 from

(B-V), 79.6 4.7 from (V-R), and 73.6 % 5.5 from (R-I) are derived.
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1f the points near maximum light are removed, these values become
71.0 % 5.5 (B-V), 74.2 + 3.8 (V-R), and 73.6 £ 2.8 (R-I}. Again the
agreement is satisfactory, and there appears to be no need to select
only phases of equal color unless the reddening is not known.

3. Bolometric radius.

One further set of radius determination was made, this time
using Equation VI-1l. Temperatures were computed from the colorﬁ'l‘eff
relations derived in Chapter IV. The bolometric magnitude of the
sun, MBOL = 4.72, and the solar effective temperature, Togg = 5800°K,
were taken from Allen (1963). 1In this case an error of 0.0l in the
gero point of the color-Teff relation introduces a systematic error
of 5% into the radius determination., A random error of 8% and a
systematic error of 7% can, therefore, be expected. The mean radius
derived is 69 + 2 R, regardless of which color was used. The agree-
ment is again satisfactory, and this method can be used for stars
that do not have accurately measured velocity curves. The radius

determinations are summarized in Table VI-1,

C. Method of Wooley and Savage.

Some comments are in order on the modification of the Wesselink
method proposed by Wooley and Savage (1971) and Wooley and Carter
(1973). Their main point is that the color depends on 8epf 25 well

as T Thus, it is necessary to include the luminosity of the star

eff”’
in the calculation, which means both the mass and radius can then be
found. They also use a velocity function instead of the observed

velocities which are often too poorly determined to be useful.

ompares the adopted velocity curve of RDT (solid line)

[(H]
<
=1
1
-
4]



with the velocity function of Wooley and Carter (1573) scaled to a

semi-amplitude of 15 km s_l {(dashed line). There is a reasonably
good agreement between the two curves except near the second bump.

Wooley and Savage make two unnecessary assumptions, however.
First, they make the assumption that A R/R 1s small encugh that
in (1 + AR/R) = AR/R. TFernie and Hube (1967) have shown that this
assumption leads t¢ an underestimate of the radius of 5 to 107%. 1Im
particular, the radius of RDT wouid be underestimated by 11%. Second,
they assume that the accelerations of the atmospheré are always small
compared to g = G M/R2 when in fact they are often much larger than
g (Parsons 1971; see also Chapter IV), These two underestimates are
partially cancelled by using p = 24/17 = 1.41, instead of the smaller
value suggested by Parsons (1972) and in Chaptef V.

As shown in this chaptér, though, the gravity variations have
only a small effect on the derived mean radius, especially if (R-I)
is used. FEven the change of the opacity scale with phase‘produces
only smali erroré in the mean radius if sufficiently weak lines are
used to define the velocity curve. With the best observations it
should be possible to achieve an accuracy of 10% with any of the
meth&ds discussed'abové, In practice, however, the errors may be
cloéer to 15 or 207 due to additional errors introduced by the lower

accuracy of the observed velocities.
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Table VI-1

Radius determinations of hydrodynamic model

in solar units

RSTB = 71.7
B-V - . Vy-R R-I expected error
Method R+ s.d. "R % s.d. R < s.d. random systematic
I

Wesselink (1946) 58.5 + 4.0 73.5 & 8.7 67.3 + 5.2 87, 2%,
Baade (1926) 77.2+ 7.8 79.6 + 4.7 73.6 £ 5.5 10% 2%

all points

some points¥ 71.0 + 5.5 74,2 + 3.8 73.6 + 2.8 10% 2%
L = 4 nRZor® 69.4 £ 2.0 69.5 + 2.2 69.2 + 1.6 8% 7%

*excluding points near maximum light

YT



R-R,(10% KM)

_ | 1 I
0.0 02 0.4 06 08 10
PHASE

8yt

Figure VI-1. Change of radius, R-RO, vs, phase — from models, --- from

adopted velocity curve.



96

© 80

R/R

64

48

+10% +
— 4 —
X T , +
+ 4:--~__-h‘~“
X X
X x
_ O g + x —
o +
O
O O x O
O
O
| I i |
0.0 0.2 04 0.6 0.8 10
PHASE ;
Figure VI-2, Wesselink radius R/RQ, vs. phase. Solid &

line from models; © from (B-Vv), + from

{v-R), x from (R=-I}.



108

1.06}

1.04

1.02

R/Ro

1.00

0.98

0.96

0.94

|

+ 0

PHASE

Figure VI-3. Baade radius vs, phase. Notation same as in Figure VI-2.

06

08

10

08T



VELOCITY (KM S

15

20 T T Y i

|
o

(&)

n

-10

| | |

-15

0.0 0.2 04 06 08
PHASE

Figure VI~4. Adopted velocity curve ( )} compared to velocity
function of Woolley and Carter {1973) normalized to a
semi-amplitude of 15 km s~1 {~~=).

10

181



CBAPTER VII

SUMMARY, CONCLUSIONS, AND FUTURE WORK

A. Summary and Conclusions.

Hydrodynamic models of the atmosphere of a lZd Cepheid have
been computed including the effects of radiative tramsfer in the
optically thin zones. A new method of including radiative tramsfer
in a standard Henyey type hydrodynamic code has been developed. The
differences between using the diffusion approximation and the solu-
tion of the transfer equation have been shown to be negligible ex-
cept ahove T = 10-2 where temperature inversiogs occcur only in the
radiative transfer case. A study of the envelope of the full
amplitude model indicates that the phase lag betw;en maximum light
and minimum radius increases continuously between the.HeII and H
ionization zomes. The asymmetry of the light curve appears to origi-
nate in theVH {onization regiom.

The Hertzsprung sequence has been examined and a mechanism
presented to explain the occurrence of two bumps on Cepheid 1igh£
curves. The bump occurring on the falling branéh of the light
‘curves of 7d to 1od Cepheids and on the rising branch of 10d to 15d
Cepheids is caused by the Christy mechanism, i.e., a pressure wave
which propagates int§ the star, reflects from the stellar core, and
appears on the next pulsation cycle, The other bump which appears
on the falling branch of 109 to 15 Cepheids is due to an atmospheric
oscillation. This bump occurs when the natural pulsation mode of

fhe atmosphere, which has a shorter period than the envelope, has a
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large enough amplitude to generate a shock wave by compressing the

hydrogen 1oniiation region. When this shock reaches the surface

it appears as a bump on the falling branch of the light curve. Since

two mechanisms pfoduce bumps on Cepheid light curves, masses derived
" from the phase of the bump may be unreliable. While it has been

shown that this mechanism is consistent with the Herzsprung sequence,

more models must be computed to fully study this atmospheric oscilla-

tion mechanism.

The hydrodynamic models were then used to compute UBVRI colors
by treating the model at each time step as a snapshot of the atmo-
spheric structure. A P-V diagram ﬁf the atmosphere cqnstructed from
the effective temperature and gravity at each phase indicates the
destabilizing influence of the hydrogen ionization region. These
efféctive temperatures and gravities were then.used to compute line
blocking coefficients which were applied to the monochromatic fluxes
to give the colors of the models, including the effects of speétral
lines. The colof curves were smoothed to minimize the zoning effects,
and it was shown that they reproduce the observed variation of light
amplitude and phase of light maximum with effective wavelength. fhe

color-Te relations were computed and were shown to agree with

£f
those derived independently. It was then shown that the loops in

the (U-B)-(B-V) diagram are most likely caused by a nonthermal depen-
dence of the continuous opacity. Mean colors of the model were computed
using three averaging é%hemes, and it was found that the intensity means
of the magnifudes, (B)I - (V)I, best represent the colors of the.
equilibrium model. The location of the equilibrium model in the

H-R diagram indicates that the zero point of the Sandage and Tammann

period-luminosity relation is too high by oT2.
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Line profiles were then compﬁted using the moving atmospheres
from the hy&rodynamic models. It was shown that, although the
velocity gradients in the atmosphere are not responsible for the
observed microturbulence or variation of microturbulence, they
can be uéed to explain the occurrence of supersonic microturbulence.
The total observed microturbulence was shown to be consistent with
the linear sum of the glassical microturbulence and that caused‘by
the velocity gradients.

The splitting of the cores of 'strong lines was shown to be due
to shock induced temperature inversions in the Cepheid atmosphere.
.This mechanism explains why the splitting is observeé only in strong
.lines in classical Cepheids and why the splitting in %z and Call H
and K is greater than in the strong metal Iines. *he splitting of
the line core makes velocity measurements from the minimum of the
profile unreliable, but a metho& for determining the wvelocity of
the upper atmosphere was presented. The center to limb variations of
the profiles were then studied, and it was shown that the commonly
used ratio of the pulsation to observed radial velocity, p = 24/17,
is too high. It was found that velocities obtained from the lines
underegtimate the velocity gradients present in the model atmospheres.
It was also shown that the integral of the velbcity over phase can be
used to find the velocity of the center of mass of the star to the
accuracy of observations in spite of changes in the continuous opacity
scale during the pulsation.

The adopted light, color, and velocity curves were then used
to study various methods for determining the mean radius of a

Cepheid. The Wesselink method was found to give radii accurate to
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gbout 10% if errors in the observed velocity curves are minimized.
Baade's method also produces‘accurate radius determinations if the
currently accepted coior—Teff relations are used. It was also shown
that the bolometric radius found from L = 4m RZU Té is reasonably
accurate and can be used for stars for which the velocity curve is not
accurately known. However, the bolometric radius is susceptible to
systematic errors introduced by errors in the reddening, the zero point
and slope of the color-T_.. law, and the zero point of the period-
luminosity relation. The Wesselink method is independent of these
systematic eirors, and Baadefs method i3 affected only by errors in

the slope of the color—Teff relation. All these errors can be reduced

by using R-I instead of B-V.

B. Future work.

There are several modifications to the models that would improve
the agreement with observations, i.e., nongray radiative transfer, proper
treatment of liﬁe blanketing, convective energy transport. The most
important of these changes is the inclusion of comvection. While it is
true that convection can carry only a small part of the flux due to the
low densities of Cepheid enyelopes,‘the destablizing influence of the
Lhydrogen ionization region is sensitive to changes in the temperature
gradient, The atmospperic pulsation modes are also dependent on the
temperature structure of the hydrogen ionization reglon. Since it takes
a ‘convective element about 0.1 period to move one pressure scale‘height, a
theory of time dependent convection is needed,

Some of the assumptions made in calculating the models need to be

investigated. One of the most common of these assumptions is that the



lower boundary of the model can be kept fixed. Both the velocity

and kinetic energy asymptotically app;oach zero in deep envelope
models, but, as shown in Figure VII-1, a 3-D plot of momentum vs.
mass point and phase, the momentum does not. The atmosphere has

very little momentum due to the lowldensity, but the momentum is
being arbitrarily forced to zero at the base of the envelope by

the zero velocity boundary condition. While it is not clear that

this constraint is significant, a model should be computed with a
free lower boundary to see if this assumption affects the observables.

Another interesting problem is the inhomogeneity of Cepheids,
Examination of a catalog Qf light curves indicates that light curves
of Cepheids with nearly the same period show striking differences.
For example, { Gem with a period of 10?15 has a low amplitude, nearly
sinusgidal light curve, while B bor with a period of 9?84 has a
large amplitude, asymmetric light curve with two distinct bumps. Qur
understanding of these differencés is limited by the common practice
of computing a model and finding a Cepheid with & similar light curve.
More would be learned about these differences if a grid of models
were computed to fit a single star as is done for stellar atmospheres,
Such a grid could also be used to study the origin of the bumps on
the light curves.

The hydrodynamic model atmospheres can also be improved by
including more optically thin zones extending to smaller optical
depth. Idealiy these models should extend to a Rosseland mean
optical depth of 10-6 to allow the strongest lines and the possible

formation of a chromosphere to be studied. This extension of the
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model will probably require that the plane parallel assumption

be dropped.

The line profile calculations can also be improved by inciuding
non-LTE effects, especizlly if "Cheshire Cat' lines are to be studied.
The ratio of pulsation to radial velocity, p, should be studied
furthe: since its variatior with line width and line strength is not
understood., TIn particular, the variation of p with pulsation velocity
should be included when constructing velocity curves as demonstrated
bty Duquesne and Schatzman (1955). Until the variation of p is under-
stood errors in the radii determined by the Wesselink or Baade methods
cannot be reduced much below 10% and the period-radius relation cannot

be used to detect stars pulsating in overtone modes,
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Momentum vs. mass point and phase.

Figure VII -1.



APPERDIX A

COEFFICIENTS OF THE INCREMENTS--DIFFUSION APPROXIMATION

The nonvanishing coefficients of the increments as derived by
G. 5. Kutter and W. M. Sparks used in the diffusion approximation cal-
culations are listed. These coefficients are denoted by the symbol DET
followed by twolnumbers. The first of these refers to the differential
eqﬁation (II—l to II-5). The second nunmber runs from 0 to 10, where 0
refers to the inhomogeneous term, and 1 to 10 identify the coefficien£s
Of v, ;4 8By 14 SRy 1o OWy 82y g 00 Svys GBi"aRi’ 8W 01720 S%i4ay20

respectively. For instance, the conservation of mass equation (iI—l)

bhas the form

DET13 » 6R, _

1 + DET14 * 6Wi—1/2 + DETi§ « ﬁRi = DET10.

i=2:
The coefficients are identical to those listed below for 1 = 3, ..., N

except for
DET13 = DET32 = Q.

123, auey N3 -

~ 3
DETL4 = Vy 1,y
DET18 = -~CON1 3
» i-1/2 "i?
: _ 1 ' 3 3
DETI0 = =V, ., + 5 CONLy_,,, (r] - r5_1)»

. . _1'
couli"llz = —t”T[MO(Qi - Qi“l)] H
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24172

ntl/2
+ 3%—1/2} »
' 1 3E | ) an
DET35 = TRHTZ |32 8oV 1M1 Yiciye  az
wi—llz w1—1/2
DET37 = - DET32 ,
DET30 = (L - 8) G2 + 66 S E _ g?
1-1/2. % Cg-172 = 77 |Pi-1/2 T Baeag2
n¥l/2 ,
My 372 Vicaze ®iap w111-1/2)] 3
c S N Sl 1 T v W12~ Vi
— _— - - ! ]
-1/2 “®Q_ o 5, -5, 1-1/2 Vi-1/2 L2
S ]
DET44 = -5 Y4 =5 . Cipisa = 24-372)
1-1/2
1 o9k :
DET4S = Y4, |2 -~ o), Zypasn = Zioas2) = Y
i-1/2
DET47 = ~1
ALy x| )
DET4S = 5 Yh; g . Cipiga = Z24m3y2) o
141/2
DET410 = ¥4, |2 - 1 2 | (z -7, 3+ |
i 2 3z, “ivljz T Ci-1f2’ T ¢
14172
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DET40 = B, - Y4, (ziﬂ',2 =23 272)

256 o r,T

1 g M, QG0 = 54172 i

Y4

DET56 = -8/r, ,

1 4%
DET58 = + 6 — s

Atn+1/2‘ r,

n n

R-.R 9

i i Y Uy
DEI30 = -—m;z * Q-9 3 + +— .

At :1 i

i=N+1:

The coefficients of equations 1, 3 and 5 are identical to those listed
above for 1 = 1, ..., N as are DET24, DET25, and DET26 except for the de-

finition of 'Y_2N+1 given below,

aM
_ : ntl/2 [+)
DEI28 = 26 Y2u1s a2 = B ¥ Qpiy2 ) - 2 ,
N+ 1
DET29 = DET210 = 0
Yot = “Ne1 | nb1/2 Vi41/2
- o oot Nl § - _ n I s
DET20 = YR + @0 [ Fupy Y241 Y172 e
i+1/2

: ntl/2
+o (FN+ = Y24 Y4372 ) »

2 -1
Y240 = 47 vy Qe = Q)1

-

Po, = PN+1/2 -«

a = (my_y/ - mN+1/211(?N-3/2Af mN-lIZ);

9K
DET44 = —Ylim_l YY‘IlsN_'_l_ W s

ZN41/2
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3K
DET45 = ~Yh. . (Y¥V4  —= . -4) ,
| W+1/2
DET47 = -1
3
DET48 = 2¥4, ., G g +1)
DET49 = DET410 = 0
DET40 = By o - Yhy
2 T
¥4 . < 1670 Nl N+1/2
M T 3L, YA + 2/3
M o
o N+1/2
Whern =~ %r Qwa = Gway2) RSV R
M. N
YY4
VY4 S

N1 YY4“+1 + 2/3



APPENDIX 3B
COEFFICIENTS OF THE INCREMENTS—

RADIATIVE TRANSFER

The coefficients of the increments that are changed to include radiative
transfer effects are listed. The notation is defined in Appendix A,

i= 2’ -..’ N:

DET40 = B, - By ,

1
DET44 = Fl i(DETM)D s
DET45 = F1 i(DETliS)D s
DET48 = 0
DET49 = F2 i(DET49)D s

DET410 = F2 i(DET&lO)D s

' 1
2 2
B, = 167" r f I pdy
Ri eff L1 7

r, 1if Ti.? 10

i
r 1f1:if<10 s

r, = radius of deepest zone with 7 < 10 ' s

1 it 210 ,
F1, =
| 1-e7271 45 1, <10 ,
11 1£v 2120 ,
F21= 1
AT :
| 1-e~ 1H1 if 1, <10,

1
bty = 5ty = Ty).
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1=N+1:
DET40 = B - B .
M1 By
DET44 = FZMI(DET44)D R
DET45 = F2N+1(DETAS)D ,
DET48 = 0

-y .
Fzml = 1 - e ‘e
A subscript D denotes the quantity was compufec_l using the formula in

Appendix A.



APPENDIX C

ELECTRON PRESSURE ITERATION PROCEDURE

Ihe electron pressure Pe is important for determining the emergent
spectrum since it affects the ionization balancg through the Saha equation.
Pe’ though, also depends on the number of free electrons, Pe = Ne kT.
Thereforey an iterative proéedure must be used to find P, from the known

temperature and density., The iteration used here can be written as

&) _ al + o

¢ {ch/Pe

2
@Dy

P

where k counts the number of iterations,

R N
Hly
N
SRR PR FLTE N
i=1
o, =B 3y, (L2 - x.2.)/x,°
2 N fitd i1 ?
i=1
Y, = number fraction of element 1 ’
i
4
X, =1+ 2. f ,
1 J=l 1]
4
Y1= j>:=:l Jflj ?
z, = X,
1 ‘]21 1]
;N
f.,. = ——JPj-_:L_.
13 N,
n=l 1i,n

Convergence of this dteration is quadratic and global,
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Plate 11. Velocity vs. mass point and phase. Bright areas indicate
‘expansion; dark @reas contraction. Base of the envelope
is at the top; surface at the bottom. Two periods are shown.
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